The Impact of Hybrid Nano-Materials in Tooth Tissue Restoration

Article Preview

Abstract:

Tooth loss due to dental diseases, caries, and other related pathological conditions has plagued people and is the most prevalent cause of human organ failure. Billions of people have suffered from losing teeth and dental diseases so that generating natural dental tissues are more appreciated than artificial tooth implantation. The aspiration among the dentists to restore this loss biologically is the genesis of the tooth regeneration. Current trends initiate tissue engineering with a concept of functional restoration of tissue and organ defects by the triad of biomaterial scaffolds, growth factors, and stem cells (Rosa et al. 2012). This paper, therefore, focuses on the significance of nanostructured hybrid materials in the tooth regeneration through tissue engineering. For this purpose, literature was examined and studies on nanomorphological features of stem cells, dental tissues found within the oral area, the signaling molecules utilized in the tissue engineering, and the hybrid scaffolds that guide reconstructions of periodontal tissues were selected for the review. The nanodentistry has been potential, undoubtedly, to achieve almost perfect dental health in the nearest future. However, the success will largely be determined by human requirements and resource supply (technology, economy, and time). Finally, the future and actual potentials of nanotechnologies pertaining tissue engineering will be applied in dentistry (Mitziadis, Woloszyk, & Jimenez-Rojo, 2012). Keywords: Stem cells; scaffolds; nanomaterials; hybrid materials, tissue engineering; dentistry; signaling molecules.

You might also be interested in these eBooks

Info:

Pages:

65-76

Citation:

Online since:

November 2018

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] About, I., Bottero, M. J., de Denato, P., Camps, J., Franquin, J. C., & Mitsiadis, T. A. (2000). Human dentin production in vitro. Experimental cell research, 258(1), 33-41.

DOI: 10.1006/excr.2000.4909

Google Scholar

[2] Acharya, G., Agrawal, P., & Patri, G. (2016). Recent biomimetic advances in rebuilding lost enamel structure. Journal of International Oral Health, 8(4), 527.

Google Scholar

[3] Allo, B. A., Costa, D. O., Dixon, S. J., Mequanint, K., & Rizkalla, A. S. (2012). Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. Journal of Functional Biomaterials, 3(2), 432-463.

DOI: 10.3390/jfb3020432

Google Scholar

[4] Besinis, A., De Peralta, T., Tredwin, C. J., & Handy, R. D. (2015). Review of nanomaterials in dentistry: Interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS nano, 9(3), 2255-2289.

DOI: 10.1021/nn505015e

Google Scholar

[5] Bhavikatti, S. K., Bhardwaj, S., & Prabhuji, M. L. (2013). Current applications of nanotechnology in dentistry: A review. General Dentistry, 62(4), 72-77.

Google Scholar

[6] Caplan, A. I., & Goldberg, V. M. (1999). Principles of tissue engineered regeneration of skeletal tissues. Clinical Orthopaedics and Related Research, 367, S12-S16.

DOI: 10.1097/00003086-199910001-00003

Google Scholar

[7] Chieruzzi, M., Pagano, S., Moretti, S., Pinna, R., Milia, E., Torre, L., & Eramo, S. (2016). Nanomaterials for tissue engineering in dentistry. Nanomaterials, 6(7), 134.

DOI: 10.3390/nano6070134

Google Scholar

[8] Daculsi, G., & Kerebel, B. (1978). High-resolution electron microscope study of human enamel crystallites: size, shape, and growth. Journal of Ultrastructure Research, 65(2), 163-172.

DOI: 10.1016/s0022-5320(78)90053-9

Google Scholar

[9] De Carvalho, F. G., Vieira, B. R., Santos, R. L. D., Carlo, H. L., Lopes, P. Q., & de Lima, B. A. S. G. (2014). In vitro effects of nano-hydroxyapatite paste on initial enamel carious lesions. Pediatric Dentistry, 36(3), 85E-89E.

Google Scholar

[10] Estroff, L.A., & Hamilton, A. D. (2001). At the interface of organic and inorganic chemistry: Bioinspired synthesis of composite materials. Chemistry of Materials, 13(10), 3227-3235.

DOI: 10.1021/cm010110k

Google Scholar

[11] Gong, T., Heng, B. C., Lo, E. C. M., & Zhang, C. (2016). Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy. Stem Cells International, (2016).

DOI: 10.1155/2016/9204574

Google Scholar

[12] Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences, 97(25), 13625-13630.

DOI: 10.1073/pnas.240309797

Google Scholar

[13] Haghgoo, R., Rezvani, M. B., & Zeinabadi, M. S. (2014). Comparison of nano-hydroxyapatite and sodium fluoride mouthrinse for remineralization of incipient carious lesions. Journal of Dentistry (Tehran, Iran), 11(4), 406.

Google Scholar

[14] Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and artilage. Biomaterials, 21(24), 2529-2543.

DOI: 10.1016/s0142-9612(00)00121-6

Google Scholar

[15] Kickelbick, G. (Ed.). (2007). Hybrid materials: Synthesis, characterization, and applications. John Wiley & Sons.

Google Scholar

[16] Kirkham J, Zhang J, Brookes SJ, Shore RC, Wood SR, Smith DA, Wallwork ML, Ryu OH, Robinson C. Evidence for charge domains on developing enamel crystal surfaces. J. Dent. Res. 2000;79:(1943).

DOI: 10.1177/00220345000790120401

Google Scholar

[17] Matras, H. (1982). The use of fibrin sealant in oral and maxillofacial surgery. Journal of Oral and Maxillofacial Surgery, 40(10), 617-622.

DOI: 10.1016/0278-2391(82)90108-2

Google Scholar

[18] Mitsiadis, T.A., Woloszyk, A., & Jiménez-Rojo, L. (2012). Nanodentistry: combining nanostructured materials and stem cells for dental tissue regeneration. Nanomedicine, 7(11), 1743-1753.

DOI: 10.2217/nnm.12.146

Google Scholar

[19] Ohazama, A., Modino, S. A. C., Miletich, I., & Sharpe, P. T. (2004). Stem-cell-based tissue engineering of murine teeth. Journal of Dental Research, 83(7), 518-522.

DOI: 10.1177/154405910408300702

Google Scholar

[20] Paine, M. L., White, S. N., Luo, W., Fong, H., Sarikaya, M., & Snead, M. L. (2001). Regulated gene expression dictates enamel structure and tooth function. Matrix Biology, 20(5), 273-292.

DOI: 10.1016/s0945-053x(01)00153-6

Google Scholar

[21] Palmer, L. C., Newcomb, C. J., Kaltz, S. R., Spoerke, E. D., & Stupp, S. I. (2008). Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews, 108(11), 4754–4783. http://doi.org/10.1021/cr8004422.

DOI: 10.1021/cr8004422

Google Scholar

[22] Panda, S., Doraiswamy, J., Malaiappan, S., Varghese, S. S., & Del Fabbro, M. (2014).

Google Scholar

[23] Pepla, E., Besharat, L. K., Palaia, G., Tenore, G., & Migliau, G. (2014). Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Annali di Stomatologia, 5(3), 108.

DOI: 10.11138/ads/2014.5.3.108

Google Scholar

[24] Robinson, C., Kirkham, J., & Shore, R. (1995). Dental enamel: Formation to destruction. CRC.

Google Scholar

[25] Rosa, V., Della Bona, A., Cavalcanti, B. N., & Nör, J. E. (2012). Tissue engineering: from research to dental clinics. Dental Materials, 28(4), 341-348.

DOI: 10.1016/j.dental.2011.11.025

Google Scholar

[26] Roselló-Camps, À., Monje, A., Lin, G. H., Khoshkam, V., Chávez-Gatty, M., Wang, H. L., ... & Hernandez-Alfaro, F. (2015).

Google Scholar

[27] Roveri, N., Battistella, E., Bianchi, C. L., Foltran, I., Foresti, E., Iafisco, M., ... & Rimondini, L. (2009).

Google Scholar

[28] Sharma, S., Srivastava, D., Grover, S., & Sharma, V. (2014). Biomaterials in tooth tissue engineering: a review. Journal of Clinical and Diagnostic Research: JCDR, 8(1), 309.

Google Scholar

[29] Thesleff, I. (2003). Epithelial-mesenchymal signalling regulating tooth morphogenesis. Journal of Cell Science, 116(9), 1647-1648.

DOI: 10.1242/jcs.00410

Google Scholar

[30] Tschoppe, P., Zandim, D. L., Martus, P., & Kielbassa, A. M. (2011). Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. Journal of Dentistry, 39(6), 430-437.

DOI: 10.1016/j.jdent.2011.03.008

Google Scholar

[31] Tsukamoto, Y., Fukutani, S., Shin-Ike, T., Kubota, T., Sato, S., Suzuki, Y., & Mori, M. (1992). Mineralized nodule formation by cultures of human dental pulp-derived fibroblasts. Archives of Oral Biology, 37(12), 1045-1055.

DOI: 10.1016/0003-9969(92)90037-9

Google Scholar

[32] Vacanti, C. A., & Bonassar, L. J. (1999). An overview of tissue engineered bone. Clinical Orthopaedics and Related Research, 367, S375-S381.

DOI: 10.1097/00003086-199910001-00036

Google Scholar

[33] Volponi, A. A., Pang, Y., & Sharpe, P. T. (2010). Stem cell-based biological tooth repair and regeneration. Trends in Cell Biology, 20(12), 715-722.

DOI: 10.1016/j.tcb.2010.09.012

Google Scholar

[34] White, S. N., Paine, M. L., Luo, W., Sarikaya, M., Fong, H., Yu, Z., ... & Snead, M. L. (2000).

Google Scholar

[35] Yamamoto, H., Kim, E. J., Cho, S. W., & Jung, H. S. (2003). Analysis of tooth formation by reaggregated dental mesenchyme from mouse embryo. Journal of Electron Microscopy, 52(6), 559-566.

DOI: 10.1093/jmicro/52.6.559

Google Scholar

[36] Young, C. S., Abukawa, H., Asrican, R., Ravens, M., Troulis, M. J., Kaban, L. B., ... & Yelick, P. C. (2005). Tissue-engineered hybrid tooth and bone. Tissue Engineering, 11(9-10), 1599-1610.

DOI: 10.1089/ten.2005.11.1599

Google Scholar

[37] Young, C. S., Terada, S., Vacanti, J. P., Honda, M., Bartlett, J. D., & Yelick, P. C. (2002). Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. Journal of Dental Research, 81(10), 695-700.

DOI: 10.1177/154405910208101008

Google Scholar

[38] Zhang, Y. D., Zhi, C. H., Song, Y. Q., Chao, L. I. U., & Cen, Y. P. (2005). Making a tooth: growth factors, transcription factors, and stem cells. Cell Research, 15(5), 301-316.

DOI: 10.1038/sj.cr.7290299

Google Scholar