[1]
About, I., Bottero, M. J., de Denato, P., Camps, J., Franquin, J. C., & Mitsiadis, T. A. (2000). Human dentin production in vitro. Experimental cell research, 258(1), 33-41.
DOI: 10.1006/excr.2000.4909
Google Scholar
[2]
Acharya, G., Agrawal, P., & Patri, G. (2016). Recent biomimetic advances in rebuilding lost enamel structure. Journal of International Oral Health, 8(4), 527.
Google Scholar
[3]
Allo, B. A., Costa, D. O., Dixon, S. J., Mequanint, K., & Rizkalla, A. S. (2012). Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. Journal of Functional Biomaterials, 3(2), 432-463.
DOI: 10.3390/jfb3020432
Google Scholar
[4]
Besinis, A., De Peralta, T., Tredwin, C. J., & Handy, R. D. (2015). Review of nanomaterials in dentistry: Interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS nano, 9(3), 2255-2289.
DOI: 10.1021/nn505015e
Google Scholar
[5]
Bhavikatti, S. K., Bhardwaj, S., & Prabhuji, M. L. (2013). Current applications of nanotechnology in dentistry: A review. General Dentistry, 62(4), 72-77.
Google Scholar
[6]
Caplan, A. I., & Goldberg, V. M. (1999). Principles of tissue engineered regeneration of skeletal tissues. Clinical Orthopaedics and Related Research, 367, S12-S16.
DOI: 10.1097/00003086-199910001-00003
Google Scholar
[7]
Chieruzzi, M., Pagano, S., Moretti, S., Pinna, R., Milia, E., Torre, L., & Eramo, S. (2016). Nanomaterials for tissue engineering in dentistry. Nanomaterials, 6(7), 134.
DOI: 10.3390/nano6070134
Google Scholar
[8]
Daculsi, G., & Kerebel, B. (1978). High-resolution electron microscope study of human enamel crystallites: size, shape, and growth. Journal of Ultrastructure Research, 65(2), 163-172.
DOI: 10.1016/s0022-5320(78)90053-9
Google Scholar
[9]
De Carvalho, F. G., Vieira, B. R., Santos, R. L. D., Carlo, H. L., Lopes, P. Q., & de Lima, B. A. S. G. (2014). In vitro effects of nano-hydroxyapatite paste on initial enamel carious lesions. Pediatric Dentistry, 36(3), 85E-89E.
Google Scholar
[10]
Estroff, L.A., & Hamilton, A. D. (2001). At the interface of organic and inorganic chemistry: Bioinspired synthesis of composite materials. Chemistry of Materials, 13(10), 3227-3235.
DOI: 10.1021/cm010110k
Google Scholar
[11]
Gong, T., Heng, B. C., Lo, E. C. M., & Zhang, C. (2016). Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy. Stem Cells International, (2016).
DOI: 10.1155/2016/9204574
Google Scholar
[12]
Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences, 97(25), 13625-13630.
DOI: 10.1073/pnas.240309797
Google Scholar
[13]
Haghgoo, R., Rezvani, M. B., & Zeinabadi, M. S. (2014). Comparison of nano-hydroxyapatite and sodium fluoride mouthrinse for remineralization of incipient carious lesions. Journal of Dentistry (Tehran, Iran), 11(4), 406.
Google Scholar
[14]
Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and artilage. Biomaterials, 21(24), 2529-2543.
DOI: 10.1016/s0142-9612(00)00121-6
Google Scholar
[15]
Kickelbick, G. (Ed.). (2007). Hybrid materials: Synthesis, characterization, and applications. John Wiley & Sons.
Google Scholar
[16]
Kirkham J, Zhang J, Brookes SJ, Shore RC, Wood SR, Smith DA, Wallwork ML, Ryu OH, Robinson C. Evidence for charge domains on developing enamel crystal surfaces. J. Dent. Res. 2000;79:(1943).
DOI: 10.1177/00220345000790120401
Google Scholar
[17]
Matras, H. (1982). The use of fibrin sealant in oral and maxillofacial surgery. Journal of Oral and Maxillofacial Surgery, 40(10), 617-622.
DOI: 10.1016/0278-2391(82)90108-2
Google Scholar
[18]
Mitsiadis, T.A., Woloszyk, A., & Jiménez-Rojo, L. (2012). Nanodentistry: combining nanostructured materials and stem cells for dental tissue regeneration. Nanomedicine, 7(11), 1743-1753.
DOI: 10.2217/nnm.12.146
Google Scholar
[19]
Ohazama, A., Modino, S. A. C., Miletich, I., & Sharpe, P. T. (2004). Stem-cell-based tissue engineering of murine teeth. Journal of Dental Research, 83(7), 518-522.
DOI: 10.1177/154405910408300702
Google Scholar
[20]
Paine, M. L., White, S. N., Luo, W., Fong, H., Sarikaya, M., & Snead, M. L. (2001). Regulated gene expression dictates enamel structure and tooth function. Matrix Biology, 20(5), 273-292.
DOI: 10.1016/s0945-053x(01)00153-6
Google Scholar
[21]
Palmer, L. C., Newcomb, C. J., Kaltz, S. R., Spoerke, E. D., & Stupp, S. I. (2008). Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews, 108(11), 4754–4783. http://doi.org/10.1021/cr8004422.
DOI: 10.1021/cr8004422
Google Scholar
[22]
Panda, S., Doraiswamy, J., Malaiappan, S., Varghese, S. S., & Del Fabbro, M. (2014).
Google Scholar
[23]
Pepla, E., Besharat, L. K., Palaia, G., Tenore, G., & Migliau, G. (2014). Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Annali di Stomatologia, 5(3), 108.
DOI: 10.11138/ads/2014.5.3.108
Google Scholar
[24]
Robinson, C., Kirkham, J., & Shore, R. (1995). Dental enamel: Formation to destruction. CRC.
Google Scholar
[25]
Rosa, V., Della Bona, A., Cavalcanti, B. N., & Nör, J. E. (2012). Tissue engineering: from research to dental clinics. Dental Materials, 28(4), 341-348.
DOI: 10.1016/j.dental.2011.11.025
Google Scholar
[26]
Roselló-Camps, À., Monje, A., Lin, G. H., Khoshkam, V., Chávez-Gatty, M., Wang, H. L., ... & Hernandez-Alfaro, F. (2015).
Google Scholar
[27]
Roveri, N., Battistella, E., Bianchi, C. L., Foltran, I., Foresti, E., Iafisco, M., ... & Rimondini, L. (2009).
Google Scholar
[28]
Sharma, S., Srivastava, D., Grover, S., & Sharma, V. (2014). Biomaterials in tooth tissue engineering: a review. Journal of Clinical and Diagnostic Research: JCDR, 8(1), 309.
Google Scholar
[29]
Thesleff, I. (2003). Epithelial-mesenchymal signalling regulating tooth morphogenesis. Journal of Cell Science, 116(9), 1647-1648.
DOI: 10.1242/jcs.00410
Google Scholar
[30]
Tschoppe, P., Zandim, D. L., Martus, P., & Kielbassa, A. M. (2011). Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. Journal of Dentistry, 39(6), 430-437.
DOI: 10.1016/j.jdent.2011.03.008
Google Scholar
[31]
Tsukamoto, Y., Fukutani, S., Shin-Ike, T., Kubota, T., Sato, S., Suzuki, Y., & Mori, M. (1992). Mineralized nodule formation by cultures of human dental pulp-derived fibroblasts. Archives of Oral Biology, 37(12), 1045-1055.
DOI: 10.1016/0003-9969(92)90037-9
Google Scholar
[32]
Vacanti, C. A., & Bonassar, L. J. (1999). An overview of tissue engineered bone. Clinical Orthopaedics and Related Research, 367, S375-S381.
DOI: 10.1097/00003086-199910001-00036
Google Scholar
[33]
Volponi, A. A., Pang, Y., & Sharpe, P. T. (2010). Stem cell-based biological tooth repair and regeneration. Trends in Cell Biology, 20(12), 715-722.
DOI: 10.1016/j.tcb.2010.09.012
Google Scholar
[34]
White, S. N., Paine, M. L., Luo, W., Sarikaya, M., Fong, H., Yu, Z., ... & Snead, M. L. (2000).
Google Scholar
[35]
Yamamoto, H., Kim, E. J., Cho, S. W., & Jung, H. S. (2003). Analysis of tooth formation by reaggregated dental mesenchyme from mouse embryo. Journal of Electron Microscopy, 52(6), 559-566.
DOI: 10.1093/jmicro/52.6.559
Google Scholar
[36]
Young, C. S., Abukawa, H., Asrican, R., Ravens, M., Troulis, M. J., Kaban, L. B., ... & Yelick, P. C. (2005). Tissue-engineered hybrid tooth and bone. Tissue Engineering, 11(9-10), 1599-1610.
DOI: 10.1089/ten.2005.11.1599
Google Scholar
[37]
Young, C. S., Terada, S., Vacanti, J. P., Honda, M., Bartlett, J. D., & Yelick, P. C. (2002). Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. Journal of Dental Research, 81(10), 695-700.
DOI: 10.1177/154405910208101008
Google Scholar
[38]
Zhang, Y. D., Zhi, C. H., Song, Y. Q., Chao, L. I. U., & Cen, Y. P. (2005). Making a tooth: growth factors, transcription factors, and stem cells. Cell Research, 15(5), 301-316.
DOI: 10.1038/sj.cr.7290299
Google Scholar