Herbally Painted Biofunctional Scaffolds with Improved Osteoinductivity for Bone Tissue Engineering

Article Preview

Abstract:

In the bone tissue engineering composite scaffolds with osteogenic potential are emerging as the new tool. Here, we investigated the graphene (GP), graphene oxide (GO) and Cissus quadrangularis (CQ) callus extract for their spontaneous osteoinductive potential. Electrospun poly ε-caprolactone (PCL) sheets were painted with varying combination GP, GO and CQ solutions as ink. The prepared PCL-GO, PCL-GO-CQ, PCL-GP and PCL-GP-CQ scaffolds were characterized for their physical, mechanical and biological properties. Addition of GO, GP, GO-CQ and GP-CQ to PCL enhanced roughness, wettability, Yield strength and tensile strength, biocompatibility .significantly. Presence of GO and CQ in PCL-GO-CQ scaffolds, while GP and CQ in PCL-GP-CQ scaffolds showed synergistic effect on the biocompatibility, Cell attachment,cell proliferation of human umbilical Wharton’s jelly derived mesenchymal stem cells (hUCMSCs) and their differentiation into osteoblasts by 21st day in culture without osteogenic differentiation media or any growth factors. Same is confirmed by the Alizarin red S staining and Von kossa staining. The combination of PCL-GO-CQ scaffold prepared by novel paint method was found to be the most potential in bone tissue engineering.

You might also be interested in these eBooks

Info:

Pages:

49-68

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Shrivats, P. Alvarez, L. Schutte, J.O. Hollinger, Bone Regeneration, Elsevier Inc., 2014.

Google Scholar

[2] J.E.L. Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Biomaterials Science : An, Acad. Press. (2004) (2015).

Google Scholar

[3] F.J. O'Brien, Biomaterials & scaffolds for tissue engineering, Mater. Today. 14 (2011) 88–95.

Google Scholar

[4] and C.-K.C. Yang, Shoufeng, Kah-Fai Leong, Zhaohui Du, The design of scaffolds for use in tissue engineering. Part I. Traditional factors, Tissue Eng. 7 (2001) 679–689.

DOI: 10.1089/107632701753337645

Google Scholar

[5] B. Chuenjitkuntaworn, T. Osathanon, N. Nowwarote, P. Supaphol, P. Pavasant, The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering, (2015) 264–271.

DOI: 10.1002/jbm.a.35558

Google Scholar

[6] K. Ren, Y. Wang, T. Sun, W. Yue, H. Zhang, Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes, Mater. Sci. Eng. C. 78 (2017) 324–332.

DOI: 10.1016/j.msec.2017.04.084

Google Scholar

[7] V.Y. Chakrapani, T.S.S. Kumar, D.K. Raj, T. V Kumary, Electrospun Cytocompatible Polycaprolactone Blend Composite with Enhanced Wettability for Bone Tissue Engineering, J. Nanosci. Nanotechnol. 17 (2017) 2320–2328.

DOI: 10.1166/jnn.2017.13713

Google Scholar

[8] Y.J. Son, H.S. Kim, H.S. Yoo, Layer-by-layer surface decoration of electrospun nanofibrous meshes for air-liquid interface cultivation of epidermal cells, RSC Adv. 6 (2016) 114061–114068.

DOI: 10.1039/c6ra23287f

Google Scholar

[9] P. Yu, R.Y. Bao, X.J. Shi, W. Yang, M.B. Yang, Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering, Carbohydr. Polym. 155 (2017) 507–515.

DOI: 10.1016/j.carbpol.2016.09.001

Google Scholar

[10] H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, et al., Fabrication , Mechanical Properties , and Biocompatibility of Graphene-Reinforced Chitosan Composites, (2010) 2345–2351.

DOI: 10.1021/bm100470q

Google Scholar

[11] Q. Zhang, K. Li, J. Yan, Z. Wang, Q. Wu, L. Bi, et al., Graphene coating on the surface of CoCrMo alloy enhances the adhesion and proliferation of bone marrow mesenchymal stem cells, Biochem. Biophys. Res. Commun. (2018). doi:10.1016/ j.bbrc.2018.02.152. This.

DOI: 10.1016/j.bbrc.2018.02.152

Google Scholar

[12] J. Qiu, J. Guo, H. Geng, W. Qian, X. Liu, Three-dimensional porous graphene nanosheets synthesized on the titanium surface for osteogenic differentiation of rat bone mesenchymal stem cells, Carbon N. Y. (2017).

DOI: 10.1016/j.carbon.2017.09.064

Google Scholar

[13] Y. Luo, H. Shen, Y. Fang, Y. Cao, J. Huang, M. Zhang, et al., Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats, ACS Appl. Mater. Interfaces. 7 (2015) 6331–6339.

DOI: 10.1021/acsami.5b00862

Google Scholar

[14] T. Kaur, A. Thirugnanam, K. Pramanik, Effect of carboxylated graphene nanoplatelets on mechanical and in-vitro biological properties of polyvinyl alcohol nanocomposite scaffolds for bone tissue engineering, Mater. Today Commun. 12 (2017) 34–42.

DOI: 10.1016/j.mtcomm.2017.06.004

Google Scholar

[15] H. Ma, W. Su, Z. Tai, D. Sun, X. Yan, B. Liu, et al., Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane, Chinese Sci. Bull. 57 (2012) 3051–3058.

DOI: 10.1007/s11434-012-5336-3

Google Scholar

[16] W. Qi, W. Yuan, J. Yan, H. Wang, Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-l-lysine composite films, J. Mater. Chem. B. 2 (2014) 5461–5467.

DOI: 10.1039/c4tb00856a

Google Scholar

[17] L.R. Jaidev, S. Kumar, K. Chatterjee, Colloids and Surfaces B : Biointerfaces Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic , osteogenic and bactericidal properties, Colloids Surfaces B Biointerfaces. 159 (2017) 293–302.

DOI: 10.1016/j.colsurfb.2017.07.083

Google Scholar

[18] A. Siddiqua, S. Mittapally, Formulation and Evaluation of ethanolic extract of Cissus quadrangularis herbal gel, 4 (2017) 9–29.

Google Scholar

[19] M.S. Rao, P. Bhagath Kumar, V.B. Narayana Swamy, N. Gopalan Kutty, Cissus quadrangularis plant extract enhances the development of cortical bone and trabeculae in the fetal femur, Pharmacologyonline. 3 (2007) 190–202.

Google Scholar

[20] B.K. Potu, M.S. Rao, N.G. Kutty, K.M.R. Bhat, M.R. Chamallamudi, S.R. Nayak, Petroleum ether extract of Cissus quadrangularis (LINN) stimulates the growth of fetal bone during intra uterine developmental period: a morphometric analysis., Clinics (Sao Paulo). 63 (2008) 815–820.

DOI: 10.1590/s1807-59322008000600018

Google Scholar

[21] N. Singh, V. Singh, R. Singh, A. Pant, U. Pal, L. Malkunje, et al., Osteogenic potential of cissus qudrangularis assessed with osteopontin expression, Natl. J. Maxillofac. Surg. 4 (2013) 52.

DOI: 10.4103/0975-5950.117884

Google Scholar

[22] D.K. Deka, L.C. Lahon, a Saikia, Mukit, Effect of Cissus quadrangularis in accelerating healing process of experimentally fractured radius-ulna of dog : a preliminary study., Indian J Pharmacol. 26 (1994) 44–45.

Google Scholar

[23] S. Suganya, J. Venugopal, S. Ramakrishna, B.S. Lakshmi, V.R. Giri Dev, Herbally derived polymeric nanofibrous scaffolds for bone tissue regeneration, J. Appl. Polym. Sci. 131 (2014) n/a-n/a.

DOI: 10.1002/app.39835

Google Scholar

[24] K. Parvathi, A.G. Krishnan, A. Anitha, R. Jayakumar, M.B. Nair, Poly(L-lactic acid) nanofibers containing Cissus quadrangularis induced osteogenic differentiation in vitro, Int. J. Biol. Macromol. 110 (2018) 514–521.

DOI: 10.1016/j.ijbiomac.2017.11.094

Google Scholar

[25] T. Zhou, G. Li, S. Lin, T. Tian, Q. Ma, Q. Zhang, et al., Electrospun Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/Graphene Oxide Scaffold: Enhanced Properties and Promoted in Vivo Bone Repair in Rats, ACS Appl. Mater. Interfaces. 9 (2017) 42589–42600.

DOI: 10.1021/acsami.7b14267

Google Scholar

[26] S.S. Kadam, M. Sudhakar, P.D. Nair, R.R. Bhonde, Reversal of experimental diabetes in mice by transplantation of neo-islets generated from human amnion-derived mesenchymal stromal cells using immuno-isolatory macrocapsules, Cytotherapy. 12 (2010) 982–991.

DOI: 10.3109/14653249.2010.509546

Google Scholar

[27] S. Sachin, S. Sachin, Islet neogenesis from the constituvely nestin expressing human umbilical cord matrix derived mesenchymal stem cell, 2 (2010) 112–120.

DOI: 10.4161/isl.2.2.11280

Google Scholar

[28] A.K. Jaiswal, S.S. Kadam, V.P. Soni, J.R. Bellare, Improved functionalization of electrospun PLLA/gelatin scaffold by alternate soaking method for bone tissue engineering, Appl. Surf. Sci. 268 (2013) 477–488.

DOI: 10.1016/j.apsusc.2012.12.152

Google Scholar

[29] N. Thadavirul, P. Pavasant, P. Supaphol, Fabrication and Evaluation of Polycaprolactone–Poly(hydroxybutyrate) or Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Dual-Leached Porous Scaffolds for Bone Tissue Engineering Applications, Macromol. Mater. Eng. 302 (2017) 1–17.

DOI: 10.1002/mame.201600289

Google Scholar

[30] K.-Y. Tsai, H.-Y. Lin, Y.-W. Chen, C.-Y. Lin, T.-T. Hsu, C.-T. Kao, Laser Sintered Magnesium-Calcium Silicate/Poly-ε-Caprolactone Scaffold for Bone Tissue Engineering, Materials (Basel). 10 (2017) 65.

DOI: 10.3390/ma10010065

Google Scholar

[31] H. Chhabra, J. Kumbhar, J. Rajwade, S. Jadhav, Three-dimensional scaffold of gelatin – poly ( methyl vinyl for regenerative medicine : Proliferation and differentiation of mesenchymal stem cells, (2016).

DOI: 10.1177/0883911515617491

Google Scholar

[32] P. Garg, C.P. Malik, Multiple shoot formation and efficient root induction in Cissus quadrangularis, Int. J. Pharm. Clin. Res. 4 (2012) 4–10.

Google Scholar

[33] P.S. R Mehta, K Teware, International Journal Of Ayurvedic And Herbal Medicine 2 : 4 ( 2012 ) 661 : 678, Int. J. Ayurvedic Herb. Med. 2 (2012) 229–233.

Google Scholar

[34] S. Suganya, J. Venugopal, S. Ramakrishna, B.S. Lakshmi, V.R. Giri Dev, Herbally derived polymeric nanofibrous scaffolds for bone tissue regeneration, J. Appl. Polym. Sci. 131 (2014) 1–11.

DOI: 10.1002/app.39835

Google Scholar

[35] S.K. Misra, T. Ansari, D. Mohn, S.P. Valappil, T.J. Brunner, W.J. Stark, et al., Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites., J. R. Soc. Interface. 7 (2010) 453–465.

DOI: 10.1098/rsif.2009.0255

Google Scholar

[36] X. He, L.L. Wu, J.J. Wang, T. Zhang, H. Sun, N. Shuai, Layer-by-layer assembly deposition of graphene oxide on poly(lactic acid) films to improve the barrier properties, High Perform. Polym. 27 (2015) 318–325.

DOI: 10.1177/0954008314545978

Google Scholar

[37] T.R. Nayak, H. Andersen, V.S. Makam, C. Khaw, S. Bae, X. Xu, et al., Graphene for Controlled and Accelerated Osteogenic Differentiation of Human Mesenchymal Stem Cells, (2011) 34.

DOI: 10.1021/nn200500h

Google Scholar

[38] F. Pahlevanzadeh, E. Hamzah, In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements, J. Mech. Behav. Biomed. Mater. (2018).

DOI: 10.1016/j.jmbbm.2018.03.016

Google Scholar

[39] A. Oyefusi, O. Olanipekun, G.M. Neelgund, D. Peterson, J.M. Stone, E. Williams, et al., Graphene nanoparticles as osteoinductive and osteoconductive platform for stem cell and bone regeneration, Biochem. Biophys. Res. Commun. 132 (2017) 410–416.

Google Scholar

[40] S. Chanda, Y. Baravalia, K. Nagani, Spectral analysis of methanol extract of Cissus quadrangularis L . stem and its fractions, 2 (2013) 149–157.

Google Scholar

[41] E.J. Lee, J.H. Lee, Y.C. Shin, D. Hwang, J.S. Kim, O.S. Jin, et al., Graphene Oxide-decorated PLGA/Collagen Hybrid Fiber Sheets for Application to Tissue Engineering Scaffolds, Biomater. Res. 18 (2014) 18–24.

Google Scholar

[42] M. Yang, S. Zhu, Y. Chen, Z. Chang, G. Chen, Y. Gong, et al., Studies on bone marrow stromal cells affinity of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), Biomaterials. 25 (2004) 1365–1373.

DOI: 10.1016/j.biomaterials.2003.08.018

Google Scholar

[43] A.M. Pinto, S. Moreira, I.C. Gonçalves, F.M. Gama, A.M. Mendes, F.D. Magalhães, Biocompatibility of poly(lactic acid) with incorporated graphene-based materials, Colloids Surfaces B Biointerfaces. 104 (2013) 229–238.

DOI: 10.1016/j.colsurfb.2012.12.006

Google Scholar

[44] H. Sun, F. Zhu, Q. Hu, P.H. Krebsbach, Controlling stem cell-mediated bone regeneration through tailored mechanical properties of collagen scaffolds., Biomaterials. 35 (2014) 1176–84.

DOI: 10.1016/j.biomaterials.2013.10.054

Google Scholar

[45] S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering. Part I. Traditional factors., Tissue Eng. 7 (2001) 679–689.

DOI: 10.1089/107632701753337645

Google Scholar

[46] C.Y. Lin, N. Kikuchi, S.J. Hollister, A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity, J. Biomech. 37 (2004) 623–636.

DOI: 10.1016/j.jbiomech.2003.09.029

Google Scholar

[47] M. Tarik Arafat, I. Gibson, X. Li, State of the art and future direction of additive manufactured scaffolds-based bone tissue engineering, Rapid Prototyp. J. 20 (2014) 13–26.

DOI: 10.1108/rpj-03-2012-0023

Google Scholar

[48] J. Wang, X. Yu, Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering, Acta Biomater. 6 (2010) 3004–3012.

DOI: 10.1016/j.actbio.2010.01.045

Google Scholar

[49] J. Wang, D. Liu, B. Guo, X. Yang, X. Chen, X. Zhu, et al., Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs, Acta Biomater. 51 (2017) 447–460.

DOI: 10.1016/j.actbio.2017.01.059

Google Scholar

[50] D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, Y. Missirlis, Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption, Biomaterials. 22 (2001) 1241–1251.

DOI: 10.1016/s0142-9612(00)00274-x

Google Scholar

[51] W.C. Lee, C.H.Y.X. Lim, H. Shi, L.A.L. Tang, Y. Wang, C.T. Lim, et al., Origin of Enhanced Stem Cell Growth and Differentiation on Graphene and Graphene Oxide, ACS Nano. 5 (2011) 7334–7341.

DOI: 10.1021/nn202190c

Google Scholar

[52] T. Guo, G. Cao, Y. Li, Z. Zhang, J.E. Nör, B.H. Clarkson, et al., Signals in Stem Cell Differentiation on Fluorapatite-Modified Scaffolds, J. Dent. Res. (2018).

DOI: 10.1177/0022034518788037

Google Scholar

[53] Y. Açil, A.A. Ghoniem, J. Wiltfang, M. Gierloff, Optimizing the osteogenic differentiation of human mesenchymal stromal cells by the synergistic action of growth factors, J. Cranio-Maxillofacial Surg. 42 (2014) 2002–2009.

DOI: 10.1016/j.jcms.2014.09.006

Google Scholar

[54] P.S. Hung, Y.C. Kuo, H.G. Chen, H.H.K. Chiang, O.K.S. Lee, Detection of Osteogenic Differentiation by Differential Mineralized Matrix Production in Mesenchymal Stromal Cells by Raman Spectroscopy, PLoS One. 8 (2013) 1–7.

DOI: 10.1371/journal.pone.0065438

Google Scholar

[55] N. Yamamoto, K. Furuya, K. Hanada, Progressive development of the osteoblast phenotype during differentiation of osteoprogenitor cells derived from fetal rat calvaria: model for in vitro bone formation., Biol. Pharm. Bull. 25 (2002) 509–515.

DOI: 10.1248/bpb.25.509

Google Scholar