[1]
R. Shrivats, P. Alvarez, L. Schutte, J.O. Hollinger, Bone Regeneration, Elsevier Inc., 2014.
Google Scholar
[2]
J.E.L. Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Biomaterials Science : An, Acad. Press. (2004) (2015).
Google Scholar
[3]
F.J. O'Brien, Biomaterials & scaffolds for tissue engineering, Mater. Today. 14 (2011) 88–95.
Google Scholar
[4]
and C.-K.C. Yang, Shoufeng, Kah-Fai Leong, Zhaohui Du, The design of scaffolds for use in tissue engineering. Part I. Traditional factors, Tissue Eng. 7 (2001) 679–689.
DOI: 10.1089/107632701753337645
Google Scholar
[5]
B. Chuenjitkuntaworn, T. Osathanon, N. Nowwarote, P. Supaphol, P. Pavasant, The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering, (2015) 264–271.
DOI: 10.1002/jbm.a.35558
Google Scholar
[6]
K. Ren, Y. Wang, T. Sun, W. Yue, H. Zhang, Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes, Mater. Sci. Eng. C. 78 (2017) 324–332.
DOI: 10.1016/j.msec.2017.04.084
Google Scholar
[7]
V.Y. Chakrapani, T.S.S. Kumar, D.K. Raj, T. V Kumary, Electrospun Cytocompatible Polycaprolactone Blend Composite with Enhanced Wettability for Bone Tissue Engineering, J. Nanosci. Nanotechnol. 17 (2017) 2320–2328.
DOI: 10.1166/jnn.2017.13713
Google Scholar
[8]
Y.J. Son, H.S. Kim, H.S. Yoo, Layer-by-layer surface decoration of electrospun nanofibrous meshes for air-liquid interface cultivation of epidermal cells, RSC Adv. 6 (2016) 114061–114068.
DOI: 10.1039/c6ra23287f
Google Scholar
[9]
P. Yu, R.Y. Bao, X.J. Shi, W. Yang, M.B. Yang, Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering, Carbohydr. Polym. 155 (2017) 507–515.
DOI: 10.1016/j.carbpol.2016.09.001
Google Scholar
[10]
H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, et al., Fabrication , Mechanical Properties , and Biocompatibility of Graphene-Reinforced Chitosan Composites, (2010) 2345–2351.
DOI: 10.1021/bm100470q
Google Scholar
[11]
Q. Zhang, K. Li, J. Yan, Z. Wang, Q. Wu, L. Bi, et al., Graphene coating on the surface of CoCrMo alloy enhances the adhesion and proliferation of bone marrow mesenchymal stem cells, Biochem. Biophys. Res. Commun. (2018). doi:10.1016/ j.bbrc.2018.02.152. This.
DOI: 10.1016/j.bbrc.2018.02.152
Google Scholar
[12]
J. Qiu, J. Guo, H. Geng, W. Qian, X. Liu, Three-dimensional porous graphene nanosheets synthesized on the titanium surface for osteogenic differentiation of rat bone mesenchymal stem cells, Carbon N. Y. (2017).
DOI: 10.1016/j.carbon.2017.09.064
Google Scholar
[13]
Y. Luo, H. Shen, Y. Fang, Y. Cao, J. Huang, M. Zhang, et al., Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats, ACS Appl. Mater. Interfaces. 7 (2015) 6331–6339.
DOI: 10.1021/acsami.5b00862
Google Scholar
[14]
T. Kaur, A. Thirugnanam, K. Pramanik, Effect of carboxylated graphene nanoplatelets on mechanical and in-vitro biological properties of polyvinyl alcohol nanocomposite scaffolds for bone tissue engineering, Mater. Today Commun. 12 (2017) 34–42.
DOI: 10.1016/j.mtcomm.2017.06.004
Google Scholar
[15]
H. Ma, W. Su, Z. Tai, D. Sun, X. Yan, B. Liu, et al., Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane, Chinese Sci. Bull. 57 (2012) 3051–3058.
DOI: 10.1007/s11434-012-5336-3
Google Scholar
[16]
W. Qi, W. Yuan, J. Yan, H. Wang, Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-l-lysine composite films, J. Mater. Chem. B. 2 (2014) 5461–5467.
DOI: 10.1039/c4tb00856a
Google Scholar
[17]
L.R. Jaidev, S. Kumar, K. Chatterjee, Colloids and Surfaces B : Biointerfaces Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic , osteogenic and bactericidal properties, Colloids Surfaces B Biointerfaces. 159 (2017) 293–302.
DOI: 10.1016/j.colsurfb.2017.07.083
Google Scholar
[18]
A. Siddiqua, S. Mittapally, Formulation and Evaluation of ethanolic extract of Cissus quadrangularis herbal gel, 4 (2017) 9–29.
Google Scholar
[19]
M.S. Rao, P. Bhagath Kumar, V.B. Narayana Swamy, N. Gopalan Kutty, Cissus quadrangularis plant extract enhances the development of cortical bone and trabeculae in the fetal femur, Pharmacologyonline. 3 (2007) 190–202.
Google Scholar
[20]
B.K. Potu, M.S. Rao, N.G. Kutty, K.M.R. Bhat, M.R. Chamallamudi, S.R. Nayak, Petroleum ether extract of Cissus quadrangularis (LINN) stimulates the growth of fetal bone during intra uterine developmental period: a morphometric analysis., Clinics (Sao Paulo). 63 (2008) 815–820.
DOI: 10.1590/s1807-59322008000600018
Google Scholar
[21]
N. Singh, V. Singh, R. Singh, A. Pant, U. Pal, L. Malkunje, et al., Osteogenic potential of cissus qudrangularis assessed with osteopontin expression, Natl. J. Maxillofac. Surg. 4 (2013) 52.
DOI: 10.4103/0975-5950.117884
Google Scholar
[22]
D.K. Deka, L.C. Lahon, a Saikia, Mukit, Effect of Cissus quadrangularis in accelerating healing process of experimentally fractured radius-ulna of dog : a preliminary study., Indian J Pharmacol. 26 (1994) 44–45.
Google Scholar
[23]
S. Suganya, J. Venugopal, S. Ramakrishna, B.S. Lakshmi, V.R. Giri Dev, Herbally derived polymeric nanofibrous scaffolds for bone tissue regeneration, J. Appl. Polym. Sci. 131 (2014) n/a-n/a.
DOI: 10.1002/app.39835
Google Scholar
[24]
K. Parvathi, A.G. Krishnan, A. Anitha, R. Jayakumar, M.B. Nair, Poly(L-lactic acid) nanofibers containing Cissus quadrangularis induced osteogenic differentiation in vitro, Int. J. Biol. Macromol. 110 (2018) 514–521.
DOI: 10.1016/j.ijbiomac.2017.11.094
Google Scholar
[25]
T. Zhou, G. Li, S. Lin, T. Tian, Q. Ma, Q. Zhang, et al., Electrospun Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/Graphene Oxide Scaffold: Enhanced Properties and Promoted in Vivo Bone Repair in Rats, ACS Appl. Mater. Interfaces. 9 (2017) 42589–42600.
DOI: 10.1021/acsami.7b14267
Google Scholar
[26]
S.S. Kadam, M. Sudhakar, P.D. Nair, R.R. Bhonde, Reversal of experimental diabetes in mice by transplantation of neo-islets generated from human amnion-derived mesenchymal stromal cells using immuno-isolatory macrocapsules, Cytotherapy. 12 (2010) 982–991.
DOI: 10.3109/14653249.2010.509546
Google Scholar
[27]
S. Sachin, S. Sachin, Islet neogenesis from the constituvely nestin expressing human umbilical cord matrix derived mesenchymal stem cell, 2 (2010) 112–120.
DOI: 10.4161/isl.2.2.11280
Google Scholar
[28]
A.K. Jaiswal, S.S. Kadam, V.P. Soni, J.R. Bellare, Improved functionalization of electrospun PLLA/gelatin scaffold by alternate soaking method for bone tissue engineering, Appl. Surf. Sci. 268 (2013) 477–488.
DOI: 10.1016/j.apsusc.2012.12.152
Google Scholar
[29]
N. Thadavirul, P. Pavasant, P. Supaphol, Fabrication and Evaluation of Polycaprolactone–Poly(hydroxybutyrate) or Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Dual-Leached Porous Scaffolds for Bone Tissue Engineering Applications, Macromol. Mater. Eng. 302 (2017) 1–17.
DOI: 10.1002/mame.201600289
Google Scholar
[30]
K.-Y. Tsai, H.-Y. Lin, Y.-W. Chen, C.-Y. Lin, T.-T. Hsu, C.-T. Kao, Laser Sintered Magnesium-Calcium Silicate/Poly-ε-Caprolactone Scaffold for Bone Tissue Engineering, Materials (Basel). 10 (2017) 65.
DOI: 10.3390/ma10010065
Google Scholar
[31]
H. Chhabra, J. Kumbhar, J. Rajwade, S. Jadhav, Three-dimensional scaffold of gelatin – poly ( methyl vinyl for regenerative medicine : Proliferation and differentiation of mesenchymal stem cells, (2016).
DOI: 10.1177/0883911515617491
Google Scholar
[32]
P. Garg, C.P. Malik, Multiple shoot formation and efficient root induction in Cissus quadrangularis, Int. J. Pharm. Clin. Res. 4 (2012) 4–10.
Google Scholar
[33]
P.S. R Mehta, K Teware, International Journal Of Ayurvedic And Herbal Medicine 2 : 4 ( 2012 ) 661 : 678, Int. J. Ayurvedic Herb. Med. 2 (2012) 229–233.
Google Scholar
[34]
S. Suganya, J. Venugopal, S. Ramakrishna, B.S. Lakshmi, V.R. Giri Dev, Herbally derived polymeric nanofibrous scaffolds for bone tissue regeneration, J. Appl. Polym. Sci. 131 (2014) 1–11.
DOI: 10.1002/app.39835
Google Scholar
[35]
S.K. Misra, T. Ansari, D. Mohn, S.P. Valappil, T.J. Brunner, W.J. Stark, et al., Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites., J. R. Soc. Interface. 7 (2010) 453–465.
DOI: 10.1098/rsif.2009.0255
Google Scholar
[36]
X. He, L.L. Wu, J.J. Wang, T. Zhang, H. Sun, N. Shuai, Layer-by-layer assembly deposition of graphene oxide on poly(lactic acid) films to improve the barrier properties, High Perform. Polym. 27 (2015) 318–325.
DOI: 10.1177/0954008314545978
Google Scholar
[37]
T.R. Nayak, H. Andersen, V.S. Makam, C. Khaw, S. Bae, X. Xu, et al., Graphene for Controlled and Accelerated Osteogenic Differentiation of Human Mesenchymal Stem Cells, (2011) 34.
DOI: 10.1021/nn200500h
Google Scholar
[38]
F. Pahlevanzadeh, E. Hamzah, In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements, J. Mech. Behav. Biomed. Mater. (2018).
DOI: 10.1016/j.jmbbm.2018.03.016
Google Scholar
[39]
A. Oyefusi, O. Olanipekun, G.M. Neelgund, D. Peterson, J.M. Stone, E. Williams, et al., Graphene nanoparticles as osteoinductive and osteoconductive platform for stem cell and bone regeneration, Biochem. Biophys. Res. Commun. 132 (2017) 410–416.
Google Scholar
[40]
S. Chanda, Y. Baravalia, K. Nagani, Spectral analysis of methanol extract of Cissus quadrangularis L . stem and its fractions, 2 (2013) 149–157.
Google Scholar
[41]
E.J. Lee, J.H. Lee, Y.C. Shin, D. Hwang, J.S. Kim, O.S. Jin, et al., Graphene Oxide-decorated PLGA/Collagen Hybrid Fiber Sheets for Application to Tissue Engineering Scaffolds, Biomater. Res. 18 (2014) 18–24.
Google Scholar
[42]
M. Yang, S. Zhu, Y. Chen, Z. Chang, G. Chen, Y. Gong, et al., Studies on bone marrow stromal cells affinity of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), Biomaterials. 25 (2004) 1365–1373.
DOI: 10.1016/j.biomaterials.2003.08.018
Google Scholar
[43]
A.M. Pinto, S. Moreira, I.C. Gonçalves, F.M. Gama, A.M. Mendes, F.D. Magalhães, Biocompatibility of poly(lactic acid) with incorporated graphene-based materials, Colloids Surfaces B Biointerfaces. 104 (2013) 229–238.
DOI: 10.1016/j.colsurfb.2012.12.006
Google Scholar
[44]
H. Sun, F. Zhu, Q. Hu, P.H. Krebsbach, Controlling stem cell-mediated bone regeneration through tailored mechanical properties of collagen scaffolds., Biomaterials. 35 (2014) 1176–84.
DOI: 10.1016/j.biomaterials.2013.10.054
Google Scholar
[45]
S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering. Part I. Traditional factors., Tissue Eng. 7 (2001) 679–689.
DOI: 10.1089/107632701753337645
Google Scholar
[46]
C.Y. Lin, N. Kikuchi, S.J. Hollister, A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity, J. Biomech. 37 (2004) 623–636.
DOI: 10.1016/j.jbiomech.2003.09.029
Google Scholar
[47]
M. Tarik Arafat, I. Gibson, X. Li, State of the art and future direction of additive manufactured scaffolds-based bone tissue engineering, Rapid Prototyp. J. 20 (2014) 13–26.
DOI: 10.1108/rpj-03-2012-0023
Google Scholar
[48]
J. Wang, X. Yu, Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering, Acta Biomater. 6 (2010) 3004–3012.
DOI: 10.1016/j.actbio.2010.01.045
Google Scholar
[49]
J. Wang, D. Liu, B. Guo, X. Yang, X. Chen, X. Zhu, et al., Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs, Acta Biomater. 51 (2017) 447–460.
DOI: 10.1016/j.actbio.2017.01.059
Google Scholar
[50]
D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, Y. Missirlis, Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption, Biomaterials. 22 (2001) 1241–1251.
DOI: 10.1016/s0142-9612(00)00274-x
Google Scholar
[51]
W.C. Lee, C.H.Y.X. Lim, H. Shi, L.A.L. Tang, Y. Wang, C.T. Lim, et al., Origin of Enhanced Stem Cell Growth and Differentiation on Graphene and Graphene Oxide, ACS Nano. 5 (2011) 7334–7341.
DOI: 10.1021/nn202190c
Google Scholar
[52]
T. Guo, G. Cao, Y. Li, Z. Zhang, J.E. Nör, B.H. Clarkson, et al., Signals in Stem Cell Differentiation on Fluorapatite-Modified Scaffolds, J. Dent. Res. (2018).
DOI: 10.1177/0022034518788037
Google Scholar
[53]
Y. Açil, A.A. Ghoniem, J. Wiltfang, M. Gierloff, Optimizing the osteogenic differentiation of human mesenchymal stromal cells by the synergistic action of growth factors, J. Cranio-Maxillofacial Surg. 42 (2014) 2002–2009.
DOI: 10.1016/j.jcms.2014.09.006
Google Scholar
[54]
P.S. Hung, Y.C. Kuo, H.G. Chen, H.H.K. Chiang, O.K.S. Lee, Detection of Osteogenic Differentiation by Differential Mineralized Matrix Production in Mesenchymal Stromal Cells by Raman Spectroscopy, PLoS One. 8 (2013) 1–7.
DOI: 10.1371/journal.pone.0065438
Google Scholar
[55]
N. Yamamoto, K. Furuya, K. Hanada, Progressive development of the osteoblast phenotype during differentiation of osteoprogenitor cells derived from fetal rat calvaria: model for in vitro bone formation., Biol. Pharm. Bull. 25 (2002) 509–515.
DOI: 10.1248/bpb.25.509
Google Scholar