CNT Incorporated Polyacrilonitrile/Polypyrrole Nanofibers as Keratinocytes Scaffold

Article Preview

Abstract:

Polypyrrole (PPy) is an attractive scaffold material for tissue engineering with its non-toxic and electrically conductive properties. There has not been enough information about PPy usage in skin tissue engineering. The aim of this study is to investigate biocompatibility of polyacrilonitrile (PAN)/PPy nanofibrous scaffold for human keratinocytes. PAN/PPy bicomponent nanofibers were prepared by electrospinning, in various PPy concentrations and with carbon nanotube (CNT) incorporation. The average diameter of electrospun nanofibers decreased with increasing PPy concentration. Further, agglomerated CNTs caused beads and disordered parts on the surface of nanofibers. Biocompatibility of these PAN/PPy and PAN/PPy/CNT scaffolds were analyzed in vitro. Both scaffolds provided adhesion and proliferation of keratinocytes. Nanofiber diameter did not significantly influence the morphology of cells. However, with increasing number of cells, cells stayed among nanofibers and this affected their shape and size. In this study, we demonstrated that PAN/PPy and PAN/PPy/CNT scaffolds enabled the growth of keratinocytes, showing their biocompatibility.

You might also be interested in these eBooks

Info:

Pages:

69-81

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.J. Li,C.T. Laurencin E.J. Caterson R.S. Tuan F.K. Ko, Electrospun nanofibrous structure: a novel scaffold for tissue engineering, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 60 (2002) 613-621.

DOI: 10.1002/jbm.10167

Google Scholar

[2] W.J. Li,C.T. Laurencin E.J. Caterson R.S. Tuan F.K. Ko, Electrospun nanofibrous structure: a novel scaffold for tissue engineering, Journal of biomedical materials research, 60 (2002) 613-621.

DOI: 10.1002/jbm.10167

Google Scholar

[3] N.M. Alves,I. Pashkuleva R.L. Reis J.F. Mano, Controlling cell behavior through the design of polymer surfaces, Small, 6 (2010) 2208-2220.

DOI: 10.1002/smll.201000233

Google Scholar

[4] A. Nur-E-Kamal,I. Ahmed,J. Kamal,M. Schindler,S. Meiners, Three dimensional nanofibrillar surfaces induce activation of Rac, Biochemical and biophysical research communications, 331 (2005) 428-434.

DOI: 10.1016/j.bbrc.2005.03.195

Google Scholar

[5] H. Yoshimoto,Y. Shin,H. Terai,J. Vacanti, A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering, Biomaterials, 24 (2003) 2077-2082.

DOI: 10.1016/s0142-9612(02)00635-x

Google Scholar

[6] D. Kai M.P. Prabhakaran,G. Jin,S. Ramakrishna, Polypyrrole‐contained electrospun conductive nanofibrous membranes for cardiac tissue engineering, Journal of biomedical materials research Part A, 99 (2011) 376-385.

DOI: 10.1002/jbm.a.33200

Google Scholar

[7] J.Y. Lee C.A. Bashur A.S. Goldstein C.E. Schmidt, Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications, Biomaterials, 30 (2009) 4325-4335.

DOI: 10.1016/j.biomaterials.2009.04.042

Google Scholar

[8] K.J. Gilmore,M. Kita,Y. Han,A. Gelmi M.J. Higgins S.E. Moulton G.M. Clark,R. Kapsa G.G. Wallace, Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components, Biomaterials, 30 (2009) 5292-5304.

DOI: 10.1016/j.biomaterials.2009.06.059

Google Scholar

[9] J.D. Madden N.A. Vandesteeg P.A. Anquetil P.G. Madden,A. Takshi R.Z. Pytel S.R. Lafontaine P.A. Wieringa I.W. Hunter, Artificial muscle technology: physical principles and naval prospects, IEEE Journal of oceanic engineering, 29 (2004) 706-728.

DOI: 10.1109/joe.2004.833135

Google Scholar

[10] L. Bay,K. West,P. Sommer‐Larsen,S. Skaarup,M. Benslimane, A conducting polymer artificial muscle with 12% linear strain, Advanced Materials, 15 (2003) 310-313.

DOI: 10.1002/adma.200390075

Google Scholar

[11] S. Hara,T. Zama,W. Takashima,K. Kaneto, TFSI-doped polypyrrole actuator with 26% strain, Journal of Materials Chemistry, 14 (2004) 1516-1517.

DOI: 10.1039/b404232h

Google Scholar

[12] I.-H. Chen,C.-C. Wang,C.-Y. Chen, Fabrication and structural characterization of polyacrylonitrile and carbon nanofibers containing plasma-modified carbon nanotubes by electrospinning, The Journal of Physical Chemistry C, 114 (2010) 13532-13539.

DOI: 10.1021/jp103993b

Google Scholar

[13] W. Zheng J.M. Razal P.G. Whitten,R. Ovalle‐Robles G.G. Wallace R.H. Baughman G.M. Spinks, Artificial muscles based on polypyrrole/carbon nanotube laminates, Advanced materials, 23 (2011) 2966-2970.

DOI: 10.1002/adma.201100512

Google Scholar

[14] J.D. Madden, N.A. Vandesteeg, P.A. Anquetil P.G. Madden,A. Takshi R.Z. Pytel S.R. Lafontaine, P.A. Wieringa I.W. Hunter, Artificial muscle technology: physical principles and naval prospects, Oceanic Engineering, IEEE Journal of, 29 (2004) 706-728.

DOI: 10.1109/joe.2004.833135

Google Scholar

[15] M. Sun,S. Zhang,T. Jiang,L. Zhang,J. Yu, Nano-wire networks of sulfur–polypyrrole composite cathode materials for rechargeable lithium batterie,. Electrochemistry Communications, 10 (2008) 1819-1822.

DOI: 10.1016/j.elecom.2008.09.012

Google Scholar

[16] D. Zhang,X. Zhang,Y. Chen,P. Yu,C. Wang,Y. Ma, Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors, Journal of Power Sources, 196 (2011) 5990-5996.

DOI: 10.1016/j.jpowsour.2011.02.090

Google Scholar

[17] J. Wang,Y. Xu,X. Chen,X. Sun, Capacitance properties of single wall carbon nanotube/polypyrrole composite films, Composites Science and Technology, 67 (2007) 2981-2985.

DOI: 10.1016/j.compscitech.2007.05.015

Google Scholar

[18] V.N. Popov, Carbon nanotubes: properties and application, Materials Science and Engineering: R: Reports, 43 (2004) 61-102.

Google Scholar

[19] S. Zhang,N. Zhang,C. Huang,K. Ren,Q. Zhang, Microstructure and Electromechanical Properties of Carbon Nanotube/Poly (vinylidene fluoride—trifluoroethylene—chlorofluoroethylene) Composites, Advanced Materials, 17 (2005) 1897-1901.

DOI: 10.1002/adma.200500313

Google Scholar

[20] G.M. Spinks,V. Mottaghitalab,M. Bahrami‐Samani P.G. Whitten G.G. Wallace, Carbon‐Nanotube‐Reinforced Polyaniline Fibers for High‐Strength Artificial Muscles, Advanced Materials, 18 (2006) 637-640.

DOI: 10.1002/adma.200502366

Google Scholar

[21] M. Tahhan,V.-T. Truong G.M. Spinks G.G. Wallace, Carbon nanotube and polyaniline composite actuators*, Smart Materials and Structures, 12(2003) 626.

DOI: 10.1088/0964-1726/12/4/313

Google Scholar

[22] B.S. Harrison,A. Atala, Carbon nanotube applications for tissue engineering, Biomaterials, 28 (2007) 344-353.

DOI: 10.1016/j.biomaterials.2006.07.044

Google Scholar

[23] H. Lee,H. Kim M.S. Cho,J. Choi,Y. Lee, Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications, Electrochimica Acta, 56 (2011) 7460-7466.

DOI: 10.1016/j.electacta.2011.06.113

Google Scholar

[24] L. Ji,Y. Yao,O. Toprakci,Z. Lin,Y. Liang,Q. Shi A.J. Medford C.R. Millns,X. Zhang, Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries, Journal of Power Sources, 195 (2010) 2050-2056.

DOI: 10.1016/j.jpowsour.2009.10.021

Google Scholar

[25] J. Pelipenko,P. Kocbek,B. Govedarica,R. Rošic,S. Baumgartner,J. Kristl, The topography of electrospun nanofibers and its impact on the growth and mobility of keratinocytes, European Journal of Pharmaceutics and Biopharmaceutics, 84 (2013) 401-411.

DOI: 10.1016/j.ejpb.2012.09.009

Google Scholar

[26] H.K. Noh S.W. Lee,J.-M. Kim,J.-E. Oh,K.-H. Kim,C.-P. Chung,S.-C. Choi W.H. Park,B.-M. Min, Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts, Biomaterials, 27 (2006) 3934-3944.

DOI: 10.1016/j.biomaterials.2006.03.016

Google Scholar

[27] L. Jeong,I.-S. Yeo H.N. Kim Y.I. Yoon D.H. Jang S.Y. Jung,B.-M. Min W.H. Park, Plasma-treated silk fibroin nanofibers for skin regeneration, International Journal of Biological Macromolecules, 44 (2009) 222-228.

DOI: 10.1016/j.ijbiomac.2008.12.008

Google Scholar

[28] B. Dhandayuthapani U.M. Krishnan,S. Sethuraman, Fabrication and characterization of chitosan‐gelatin blend nanofibers for skin tissue engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 94 (2010) 264-272.

DOI: 10.1002/jbm.b.31651

Google Scholar

[29] S.G. Kumbar S.P. Nukavarapu,R. James L.S. Nair C.T. Laurencin, Electrospun poly (lactic acid-co-glycolic acid) scaffolds for skin tissue engineering, Biomaterials, 29 (2008) 4100-4107.

DOI: 10.1016/j.biomaterials.2008.06.028

Google Scholar

[30] L. Ji,Z. Lin A.J. Medford,X. Zhang, Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material, Carbon, 47 (2009) 3346-3354.

DOI: 10.1016/j.carbon.2009.08.002

Google Scholar

[31] N. Kaur,V. Kumar S.R. Dhakate, Synthesis and characterization of multiwalled CNT–PAN based composite carbon nanofibers via electrospinning, SpringerPlus, 5 (2016) 483.

DOI: 10.1186/s40064-016-2051-6

Google Scholar

[32] C. Luo,J. Wang,P. Jia,Y. Liu,J. An,B. Cao,K. Pan, Hierarchically structured polyacrylonitrile nanofiber mat as highly efficient lead adsorbent for water treatment, Chemical Engineering Journal, 262 (2015) 775-784.

DOI: 10.1016/j.cej.2014.09.116

Google Scholar

[33] I. Seo,M. Pyo,G. Cho, Micrometer to nanometer patterns of polypyrrole thin films via microphase separation and molecular mask, Langmuir, 18 (2002) 7253-7257.

DOI: 10.1021/la025685q

Google Scholar

[34] W. Wang,Y. Zheng,X. Jin,Y. Sun,B. Lu,H. Wang,J. Fang,H. Shao,T. Lin, Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes, Nano energy, 56 (2019) 588-594.

DOI: 10.1016/j.nanoen.2018.11.082

Google Scholar

[35] P. Mavinakuli,S. Wei,Q. Wang A.B. Karki,S. Dhage,Z. Wang D.P. Young,Z. Guo, Polypyrrole/silicon carbide nanocomposites with tunable electrical conductivity, The Journal of Physical Chemistry C, 114 (2010): 3874-3882.

DOI: 10.1021/jp911766y

Google Scholar

[36] J. Hazarika,A. Kumar, Controllable synthesis and characterization of polypyrrole nanoparticles in sodium dodecylsulphate (SDS) micellar solutions, Synthetic Metals, 175 (2013) 155-162.

DOI: 10.1016/j.synthmet.2013.05.020

Google Scholar

[37] V. Mottaghitalab,B. Xi,G.M. Spinks G.G. Wallace, Polyaniline fibres containing single walled carbon nanotubes: Enhanced performance artificial muscles, Synthetic Metals, 156 (2006) 796-803.

DOI: 10.1016/j.synthmet.2006.03.016

Google Scholar

[38] S. Canobre,F. Xavier,W. Fagundes,A. de Freitas,F. Amaral, Performance of the chemical and electrochemical composites of PPy/CNT as electrodes in type I supercapacitors, Journal of Nanomaterials, 16 (2015) 160.

DOI: 10.1155/2015/560164

Google Scholar

[39] C. Guetta-Terrier,P. Monzo,J. Zhu,H. Long,L. Venkatraman,Y. Zhou,P. Wang S.Y. Chew,A. Mogilner,B. Ladoux, Protrusive waves guide 3D cell migration along nanofibers, J Cell Biol, 211 (2015) 683-701.

DOI: 10.1083/jcb.201501106

Google Scholar

[40] R.A. MacDonald C.M. Voge,M. Kariolis J.P. Stegemann, Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels, Acta biomaterialia, 4 (2008) 1583-1592.

DOI: 10.1016/j.actbio.2008.07.005

Google Scholar

[41] A.F. Deyrieux V.G. Wilson, In vitro culture conditions to study keratinocyte differentiation using the HaCaT cell line, Cytotechnology, 54 (2007) 77-83.

DOI: 10.1007/s10616-007-9076-1

Google Scholar

[42] O. Baskan,G. Mese,E. Ozcivici, Low-intensity vibrations normalize adipogenesis-induced morphological and molecular changes of adult mesenchymal stem cells, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 231 (2017) 160-168.

DOI: 10.1177/0954411916687338

Google Scholar

[43] L. Demiray,E. ÖZÇİVİCİ, Bone marrow stem cells adapt to low-magnitude vibrations by altering their cytoskeleton during quiescence and osteogenesis, Turkish Journal of Biology, 39 (2015) 88-97.

DOI: 10.3906/biy-1404-35

Google Scholar

[44] T. Yeung P.C. Georges L.A. Flanagan,B. Marg,M. Ortiz,M. Funaki,N. Zahir,W. Ming,V. Weaver P.A. Janmey, Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, Cell motility and the cytoskeleton, 60 (2005) 24-34.

DOI: 10.1002/cm.20041

Google Scholar

[45] K.S. Rho,L. Jeong,G. Lee,B.-M. Seo Y.J. Park,S.-D. Hong,S. Roh J.J. Cho W.H. Park,B.-M. Min, Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing, Biomaterials, 27 (2006) 1452-1461.

DOI: 10.1016/j.biomaterials.2005.08.004

Google Scholar

[46] M.C. Serrano M.C. Gutiérrez,F. del Monte, Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications, Progress in Polymer Science, 39 (2014) 1448-1471.

DOI: 10.1016/j.progpolymsci.2014.02.004

Google Scholar

[47] P. Gupta,S. Sharan,P. Roy,D. Lahiri, Aligned carbon nanotube reinforced polymeric scaffolds with electrical cues for neural tissue regeneration, Carbon, 95 (2015) 715-724.

DOI: 10.1016/j.carbon.2015.08.107

Google Scholar

[48] M. Kharaziha S.R. Shin,M. Nikkhah S.N. Topkaya,N. Masoumi,N. Annabi M.R. Dokmeci,A. Khademhosseini, Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs, Biomaterials, 35 (2014) 7346-7354.

DOI: 10.1016/j.biomaterials.2014.05.014

Google Scholar

[49] S.-J. Yen,W.-L. Hsu,Y.-C. Chen,H.-C. Su,Y.-C. Chang,H. Chen,S.-R. Yeh,T.-R. Yew, The enhancement of neural growth by amino-functionalization on carbon nanotubes as a neural electrode, Biosensors and Bioelectronics, 26 (2011) 4124-4132.

DOI: 10.1016/j.bios.2011.04.003

Google Scholar

[50] D.D. Ateh,P. Vadgama H.A. Navsaria, Culture of human keratinocytes on polypyrrole-based conducting polymers, Tissue engineering, 12 (2006) 645-655.

DOI: 10.1089/ten.2006.12.645

Google Scholar

[51] J. Zheng,A. He,J. Li,J. Xu,C.C. Han, Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying, Polymer, 47 (2006) 7095-7102.

DOI: 10.1016/j.polymer.2006.08.019

Google Scholar

[52] L. Ji,A.J. Medford,X. Zhang, Electrospun polyacrylonitrile/zinc chloride composite nanofibers and their response to hydrogen sulfide, Polymer,50 (2009) 605-612.

DOI: 10.1016/j.polymer.2008.11.016

Google Scholar

[53] A.S. Goldstein T.M. Juarez C.D. Helmke M.C. Gustin A.G. Mikos, Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds, Biomaterials, 22 (2001) 1279-1288.

DOI: 10.1016/s0142-9612(00)00280-5

Google Scholar

[54] W. Mueller-Klieser, Three-dimensional cell cultures: from molecular mechanisms to clinical application,. American Journal of Physiology-Cell Physiology, 273 (1997) C1109-C1123.

DOI: 10.1152/ajpcell.1997.273.4.c1109

Google Scholar

[55] H. Hosseinkhani,M. Hosseinkhani,H. Kobayashi, Proliferation and differentiation of mesenchymal stem cells using self-assembled peptide amphiphile nanofibers, Biomedical materials, 1 (2006) 8.

DOI: 10.1088/1748-6041/1/1/002

Google Scholar

[56] J. Zhong,H. Zhang,J. Yan,X. Gong, Effect of nanofiber orientation of electrospun nanofibrous scaffolds on cell growth and elastin expression of muscle cells, Colloids and Surfaces B: Biointerfaces, 136 (2015) 772-778.

DOI: 10.1016/j.colsurfb.2015.10.017

Google Scholar