Journal of Biomimetics, Biomaterials and Biomedical Engineering Vol. 41

Paper Title Page

Abstract: Accurate method to identify foot morphology would further contribute to understand foot mechanism. The aim of this study is to identify foot morphology feature between habitually barefoot and shod population with 3D technology of scan. Sixty subjects both 30 habitually barefoot and 30 habitually shod participated foot scanning test. A 3-dimension laser device was applied to execute foot scanning. The findings of this study showed that habitually barefoot group displayed the foot features of the large ball perimeters, large minimal distance between hallux and other toes and the smaller hallux angle than habitually shod group. To conclude, the significant differences of foot morphology between habitually barefoot and habitually shod was mainly in forefoot area, this morphological features would provide some sights for the exploration of barefoot locomotion.
1
Abstract: The purpose of this work is to investigate the effect of anteriorly-added mass to simulate pregnancy on lower extremities kinematic and lumbar and thoracic angles during stair ascending and descending. 18 healthy females ascended and descended, with and without a pseudo-pregnancy sac of 12 kg (experimental and control groups, respectively), a costume-made wooden staircase while instrumented with 20 reflective markers placed on the lower extremities and the spine. The movements were captured by 12 infrared cameras surrounding the staircase. Tracked position data were exported to MATLAB to calculate the required joints angles. SPSS was used to compare the ascent and descent phases of control group, and to find if there are any significant differences between control and experimental groups in the ascent phase as well as in the descent phase. When comparing the ascent and descent phases of control group, data revealed a higher hip flexion during ascending and greater ankle planter-flexion and dorsiflexion, lumbar, and thoracic angles during descending; however, no significant difference was shown in the knee flexion angle between ascending and descending. Non-pregnant data showed greater maximum hip flexion and ankle dorsiflexion during stair ascending compared to simulated-pregnant group; while ankle planter-flexion, knee flexion, and lumbar angle were greater for simulated-pregnant status. During stair descending, non-pregnant group had greater minimum hip flexion and ankle dorsiflexion compared to simulated pregnant group; while ankle planter-flexion, knee flexion, and maximum hip flexion were greater for simulated-pregnant group. However, the lumbar and thoracic angles were found to be similar for simulated-pregnant and non-pregnant groups during stair descending. In conclusion, the current study revealed important kinematic modifications pregnant women adopt while ascending and descending stairs at their final stage of pregnancy to increase their stability.
11
Abstract: The goal of this study was to develop a method of friction testing utilizing cartilage counter surfaces with a complete subchondral bone plate and compare the results to the cartilage on glass and metal (steel) counter surfaces. Articular cartilage surfaces with the underlying subchondral bone intact were not isolated through plug removal. Friction testing was completed using a tribometer (n=16). The coefficient of friction (COF) was measured between the proximal articular surfaces of the second carpal bone when brought into contact with the articular surface of the distal radial facet. The COF of the distal radial facet was obtained with glass and metal counter surfaces. Cartilage-cartilage interfaces yielded the lowest COF when a normal force of 5N and 10N was applied. No statistically significant increase in COF was noted for any combination when an increased normal force was applied (10N), although an increase was observed when glass and metal was in contact with cartilage. COF significantly increased when comparing the cartilage counter surface to metal under an applied load of 5N (p=0.0002). When a 10N load was applied, a significant increase in the COF was observed when comparing the cartilage counter surface to both the glass and metal counter surfaces (p=0.0123 and p < 0.0001 respectively). Results have shown that the described methodology was accurate, repeatable, and emulates physiologic conditions when determining the friction coefficient. The determined COF of cartilage against cartilage is significantly lower than cartilage against metal or glass.
23
Abstract: Generally, implants fixations in orthopedic surgery are insured by bone cement; which is generated mainly from polymer polymethylmethacrylate (PMMA). Since, the cement is identified as the weakest part among bone-cement-prosthesis assembly. Hence, the characterization of mechanical behaviour is of a crucial requirement for orthopaedic surgeon’s success. In this study, we investigates the failure behaviour of bone cement, under combined shear and compression loading, for the aim to determine the strengths of bone cement for different mode loading conditions. Therefore, experimental cylindrical specimens has been tested to assess different shear-compression stresses. Based on the mechanical tests, a finite elements model of cylindrical specimens was developed to evaluate stresses distribution in the bone cement under compression, shear and combined shear-compression loading. Results show that, the load which leading to the failure of the cement decreased with increasing of the specimen angle inclination with respect of loading direction.
37
Abstract: In the bone tissue engineering composite scaffolds with osteogenic potential are emerging as the new tool. Here, we investigated the graphene (GP), graphene oxide (GO) and Cissus quadrangularis (CQ) callus extract for their spontaneous osteoinductive potential. Electrospun poly ε-caprolactone (PCL) sheets were painted with varying combination GP, GO and CQ solutions as ink. The prepared PCL-GO, PCL-GO-CQ, PCL-GP and PCL-GP-CQ scaffolds were characterized for their physical, mechanical and biological properties. Addition of GO, GP, GO-CQ and GP-CQ to PCL enhanced roughness, wettability, Yield strength and tensile strength, biocompatibility .significantly. Presence of GO and CQ in PCL-GO-CQ scaffolds, while GP and CQ in PCL-GP-CQ scaffolds showed synergistic effect on the biocompatibility, Cell attachment,cell proliferation of human umbilical Wharton’s jelly derived mesenchymal stem cells (hUCMSCs) and their differentiation into osteoblasts by 21st day in culture without osteogenic differentiation media or any growth factors. Same is confirmed by the Alizarin red S staining and Von kossa staining. The combination of PCL-GO-CQ scaffold prepared by novel paint method was found to be the most potential in bone tissue engineering.
49
Abstract: Polypyrrole (PPy) is an attractive scaffold material for tissue engineering with its non-toxic and electrically conductive properties. There has not been enough information about PPy usage in skin tissue engineering. The aim of this study is to investigate biocompatibility of polyacrilonitrile (PAN)/PPy nanofibrous scaffold for human keratinocytes. PAN/PPy bicomponent nanofibers were prepared by electrospinning, in various PPy concentrations and with carbon nanotube (CNT) incorporation. The average diameter of electrospun nanofibers decreased with increasing PPy concentration. Further, agglomerated CNTs caused beads and disordered parts on the surface of nanofibers. Biocompatibility of these PAN/PPy and PAN/PPy/CNT scaffolds were analyzed in vitro. Both scaffolds provided adhesion and proliferation of keratinocytes. Nanofiber diameter did not significantly influence the morphology of cells. However, with increasing number of cells, cells stayed among nanofibers and this affected their shape and size. In this study, we demonstrated that PAN/PPy and PAN/PPy/CNT scaffolds enabled the growth of keratinocytes, showing their biocompatibility.
69
Abstract: Surgery for severe chronic or atypical ongoing purulent-inflammatory diseases of the face and neck is performed alongside antibacterial therapy. We proposed the treatment of severe forms of the chronic stage of odontogenic osteomyelitis of the mandible using the method of direct intra-arterial lymphotropic therapy through the superficial temporal artery on the side of the lesion. The purpose of this study was to determine the concentration of antibiotic in the blood serum, flowing from the patient's mandible from the localization of the focus of pathology when the traditional (intravenous) and intra-arterial routes of administration are used during postoperative period of chronic odontogenic osteomyelitis of the mandible.
83
Abstract: The interference of artefacts with evoked scalp electroencephalogram (EEG) responses is a problem in event related brain computer interface (BCI) system that reduces signal quality and interpretability of user's intentions. Many strategies have been proposed to reduce the effects of non-neural artefacts, while the activity of neural sources that do not reflect the considered stimulation has been neglected. However discerning such activities from those to be retained is important, but subtle and difficult as most of their features are the same. We propose an automated method based on a combination of a genetic algorithm (GA) and a support vector machine (SVM) to select only the sources of interest. Temporal, spectral, wavelet, autoregressive and spatial properties of independent components (ICs) of EEG are inspected. The method selects the most distinguishing subset of features among this comprehensive fused set of information and identifies the components to be preserved. EEG data were recorded from 12 healthy subjects in a visual evoked potential (VEP) based BCI paradigm and the corresponding ICs were classified by experts to train and test the algorithm. They were contaminated with different sources of artefacts, including electromyogram (EMG), electrode connection problems, blinks and electrocardiogram (ECG), together with neural contributions not related to VEPs. The accuracy of ICs classification was about 88.5% and the energetic residual error in recovering the clean signals was 3%. These performances indicate that this automated method can effectively identify and remove main artefacts derived from either neural or non-neural sources while preserving VEPs. This could have important potential applications, contributing to speed and remove subjectivity of the cleaning procedure by experts. Moreover, it could be included in a real time BCI as a pre-processing step before the identification of the user’s intention.
91
Abstract: The recordings of electrocardiogram (ECG), as an important biological signal which provides a valuable basis for the clinical diagnosis and treatment, are often corrupted by the wide range of artifacts. One important of them is power line interference (PLI). The overlapping interference affects the quality of ECG waveform, leading to the false detection and recognition of wave groups, and thus causing faulty treatment or diagnosis. The study deals with some of the signal processing approaches frequently used for elimination of PLI in ECG signal and compares the accuracy of methods by evaluation of the power of the remaining noise and comparing a filtered ECG signal with an original. The results are compared for three levels of interference and each tested method: Butterworth filter (BF), notch filter, moving average filter (MA), adaptive noise canceller (ANC), wavelet transform (WT) and empirical mode decomposition (EMD).
105
Abstract: The aim of this work was to design and implement the application of visual acuity evaluation for the eye center information system. The application was designed for Android Operating System (OS) and was programmed in Android Studio. This work also deals with the implementation of the application, from the design of the user interface, through the creation and configuration of the project in Android Studio to the functionality of individual screens and connection with the back-end.
117

Showing 1 to 10 of 10 Paper Titles