Numerical Investigation of Blood Flow Characteristics through Cannulated Aorta

Article Preview

Abstract:

Cannulation of the aorta is done in order to provide oxygenation and circulatory function through the use of the heart lung machine during cardio-pulmonary bypass (CPB). The nature of the blood flow through the aorta and its ramifications during CPB is mostly linear as compared to the physiological flow, which is pulsatile in nature. This leads to the development of multiple morbidities caused by the development of emboli and atheromas. Perioperative postoperative care is necessitated by these conditions. As such the understanding of the blood flow characteristics is necessitated in order to effectively prevent the formation of emboli and to prevent the "Sandblasting" effect. The authors in this work seek to investigate the nature of blood flow through the aorta under such circumstances. The results obtained show the nature of blood flow in the cannulated aorta as well as the optimum angle of placement of the cannula with respect to the aortic wall.

You might also be interested in these eBooks

Info:

Pages:

28-38

Citation:

Online since:

November 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Clowes G.H.A., Jr., Bypass of the heart and lungs with an extracorporeal circulation. In: Gibbon JH, Sabiston DC, Spencer FC, (Eds.) Surgery of the chest. 2nd ed., Saunders, Philadelphia (1969).

Google Scholar

[2] Utley J.R. Early development of cardiopulmonary bypass. Perfusion. 1(1) (1986) 1-14.

Google Scholar

[3] Galletti P.M., Brecher G.A. Heart-Lung Bypass. Principles and techniques of extracorporeal circulation, Grune & Stratton, New York, (1962).

Google Scholar

[4] Rodewald G. History of extracorporeal circulation. In: Hagl S, Klövekorn W.P., Mayr N., Sebening F., (Eds.) Thirty years of extracorporeal circulation, Carl Gerber, Munich, 1984, pp.25-43.

DOI: 10.1177/026765918600100110

Google Scholar

[5] Hurst, J. W., Fye, W. B., & Zimmer, H.-G., The heart-lung machine was invented twice-the first time by Max von Frey. Clinical Cardiology, 26(9), (2003) 443–445.

DOI: 10.1002/clc.4960260914

Google Scholar

[6] Gomes O.M.C., Conceição D.S., Circulação extracorpórea. In: UFMAG (Ed.) Histórico. Circulação extracorpórea. 2nd ed., Belo Horizonte, (1985).

Google Scholar

[7] Litwak R.S., The growth of cardiac surgery: historical notes. Cardiovasc Clin 3(2), (1971) 5-50.

Google Scholar

[8] Johnson S.L., The history of cardiac surgery,. Johns Hopkins Press, Baltimore, 1970, pp.1896-1955.

Google Scholar

[9] Passaroni, A. C., Silva, M. A. de M., & Yoshida, W. B., Cardiopulmonary bypass: development of John Gibbon's heart-lung machine. Revista Brasileira de Cirurgia Cardiovascular (2015).

DOI: 10.5935/1678-9741.20150021

Google Scholar

[10] Konstantinov, I. E., & Alexi-Meskishvili, V. V., Sergei S. Brukhonenko: the development of the first heart-lung machine for total body perfusion. The Annals of Thoracic Surgery, 69(3), (2000) 962–966.

DOI: 10.1016/s0003-4975(00)01091-2

Google Scholar

[11] Oransky, I., Clarence Dennis. The Lancet, 366(9488), (2005) 802.

DOI: 10.1016/s0140-6736(05)67203-0

Google Scholar

[12] Dennis, C., Spreng, D. S., Nelson, G. E., Karlson, K. E., Nelson, R. M., Thomas, J. V., … Varco, R. L., Development of A Pump-Oxygenator To Replace The Heart And Lungs; An Apparatus Applicable To Human Patients, And Application To One Case*. Annals of Surgery, 134(4), (1951) 709–721.

DOI: 10.1097/00000658-195113440-00017

Google Scholar

[13] Newman, M.F., Kirchner, J.L., Phillips-Bute, B., Gaver, V., Grocott, H., Jones, R.H., Mark, D.B., Reves, J.G., Blumenthal, J.A., Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery, New England Journal of Medicine 344 (6) (2001) 395.

DOI: 10.1056/nejm200102083440601

Google Scholar

[14] Blauth, C.I., Cosgrove, D.M., Webb, B.W., Ratliff, N.B., Boylan, M., Piedmonte, M.R., Lytle, B.W., Loop, F.D., Atheroembolism from the ascending aorta. An emerging problem in cardiac surgery, The Journal of Thoracic and Cardiovascular Surgery 103 (6) (1992) 1104.

DOI: 10.1016/s0022-5223(19)34874-3

Google Scholar

[15] Likosky, D.S., Marrin, C.A.S., Caplan, L.R., Baribeau, Y.R., Morton, J.R., Weintraub, R.M., Hartman, G.S., Hernandez Jr, F., Braff, S.P., Charlesworth, D.C., Determination of etiologic mechanisms of strokes secondary to coronary artery bypass graft surgery, Stroke 34 (12) (2003) 2830–2834.

DOI: 10.1161/01.str.0000098650.12386.b3

Google Scholar

[16] Djaiani, G., Fedorko, L., Borger, M., Mikulis, D., Carroll, J., Cheng, D., Karkouti, K., Beattie, S., Karski, J., Mild to moderate atheromatous disease of the thoracic aorta and new ischemic brain lesions after conventional coronary artery bypass graft surgery, Stroke 35 (9) (2004) e356–e358.

DOI: 10.1161/01.str.0000138783.63858.62

Google Scholar

[17] Avrahami, I., Dilmoney, B., Hirshorn, O., Brand, M., Cohen, O., Shani, L., Nil, R.R., Bolotin, G., Numerical investigation of a novel aortic cannula aimed at reducing cerebral embolism during cardiovascular bypass surgery, Journal of Biomechanics, 46(2) (2013) 354–361.

DOI: 10.1016/j.jbiomech.2012.11.004

Google Scholar

[18] Weinstein, G.S. Left hemispheric strokes in coronary surgery: implications for end-hole aortic cannulas, Annals of Thoracic Surgery 71 (1) (2001) 128–132.

DOI: 10.1016/s0003-4975(00)02208-6

Google Scholar

[19] Fukuda, I., Minakawa, M., Fukui, K., Taniguchi, S., Daitoku, K., Suzuki, Y., Hashimoto, H., Breakdown of atheromatous plaque due to shear force from arterial perfusion cannula, Annals of Thoracic Surgery 84(4) (2007) e17–18.

DOI: 10.1016/j.athoracsur.2007.06.013

Google Scholar

[20] Machin, D., & Allsager, C., Principles of cardiopulmonary bypass, Continuing Education in Anaesthesia Critical Care & Pain, 6(5) (2006) 176–181.

DOI: 10.1093/bjaceaccp/mkl043

Google Scholar

[21] Swaminathan, M., Grocott, H. P., Mackensen, G. B., Podgoreanu, M. V., Glower, D. D., & Mathew, J. P., The Sandblasting, Effect of Aortic Cannula on Arch Atheroma During Cardiopulmonary Bypass, Anesthesia & Analgesia, 104(6) (2007) 1350–1351.

DOI: 10.1213/01.ane.0000264090.24756.08

Google Scholar

[22] Hamano, K., Ikeda, Y., Mikamo, A., Okada, H., Gohra, H., Zempo, N., … Esato, K., Atheromatous Plaque in the Distal Aortic Arch Creating the Potential for Cerebral Embolism During Cardiopulmonary Bypass, Japanese Circulation Journal, 65(3) (2001) 161–164.

DOI: 10.1253/jcj.65.161

Google Scholar

[23] Koh, T. W., Parker, K. H., Kon, M., & Pepper, J. R., Changes in aortic rotational flow during cardiopulmonary bypass studied by transesophageal echocardiography and magnetic resonance velocity imaging: a potential mechanism for atheroembolism during cardiopulmonary bypass, Heart and Vessels, 16(1) (2001) 1–8.

DOI: 10.1007/pl00007273

Google Scholar

[24] Garcia-Rinaldi, R., Vaughan, G. D., Revuelta, J. M., Goiti, J. J., & Gomez-Durán, C., Simplified Aortic Cannulation, The Annals of Thoracic Surgery, 36(2) (1983) 226–227. ‌[25] Evangelista, A., Flachskampf, F. A., Erbel, R., Antonini-Canterin, F., Vlachopoulos, C., Rocchi, G., … Plonska-Gosciniak, E., Echocardiography in aortic diseases: EAE recommendations for clinical practice, European Journal of Echocardiography, 11(8) (2010) 645–658.

DOI: 10.1093/ejechocard/jeq056

Google Scholar

[26] Shibeshi, S. S., & Collins, W. E., The Rheology of Blood Flow in a Branched Arterial System. Applied Rheology, 15(6) (2005) 398–405.

DOI: 10.1515/arh-2005-0020

Google Scholar

[27] Morris, L., Delassus, P., Callanan, A., Walsh, M., Wallis, F., Grace, P., & McGloughlin, T., 3-D Numerical Simulation of Blood Flow Through Models of the Human Aorta. Journal of Biomechanical Engineering, 127(5) (2005) 767.

DOI: 10.1115/1.1992521

Google Scholar