[1]
A. Mesin, L. Cescon, C. Gazzoni, M. Merletti, R. and Rainoldi, A bi-dimensional index for the selective assessment of myoelectric manifestations of peripheral and central muscle fatigue. J. Electromyogr. Kinesiol, 19 (2009), pp.851-863.
DOI: 10.1016/j.jelekin.2008.08.003
Google Scholar
[2]
R. M. Enoka, and J. Duchateau, Muscle fatigue: what, why and how it influences muscle function. The Journal of physiology, 586 (2008), pp.11-23.
DOI: 10.1113/jphysiol.2007.139477
Google Scholar
[3]
A. Hakonen, M. Piitulainen, H. and Visala, Current state of digital signal processing in myoelectric interfaces and related applications. Biomed. Signal Process. Control. 18 (2015), pp.334-359.
DOI: 10.1016/j.bspc.2015.02.009
Google Scholar
[4]
G.C. Bogdanis, Effects of physical activity and inactivity on muscle fatigue. Frontiers in physiology, 3 (2012), p.142.
Google Scholar
[5]
A.T. Nummela, K.A. Heath, L.M. Paavolainen, M.I. Lambert, A.S.C. Gibson, H.K. Rusko, and T.D. Noakes, T.D, Fatigue during a 5-km running time trial. International journal of sports medicine, 29 (2008), pp.738-745.
DOI: 10.1055/s-2007-989404
Google Scholar
[6]
C. Fritschi and L. Quinn. Fatigue in patients with diabetes: A review. J. Psychosom. 1(2010), p.33–41.
Google Scholar
[7]
W. Luttmann, A. Jäger and Laurig. Electromyographical indication of muscular fatigue in occupational field studies. Int. J. Ind. Ergon. 6 (2000), pp.645-660.
DOI: 10.1016/s0169-8141(99)00053-0
Google Scholar
[8]
W. Luttmann, A. Jager, M. Sokeland and Lauring. Electromyographical study on surgeons in urology. II. Determination of muscular fatigue. Ergonomics. 2 (1996), p.298–313.
DOI: 10.1080/00140139608964460
Google Scholar
[9]
K. Doix, A. C. M. Gulliksen, A. Brændvik, S. M. and Roeleveld. Fatigue and muscle activation during submaximal elbow flexion in children with cerebral palsy. J. Electromyogr. Kinesiol. 3 (2013), pp.721-726.
DOI: 10.1016/j.jelekin.2012.12.005
Google Scholar
[10]
K. G. Marras, W. S. and Davis. A non-MVC EMG normalization technique for the trunk musculature: Part 1. Method development. J. Electromyogr. Kinesiol. 1 (2001), pp.1-9., (2001).
DOI: 10.1016/s1050-6411(00)00039-0
Google Scholar
[11]
O. So, R. Chan, K. M. and Siu. EMG power frequency spectrum shifts during repeated isokinetic knee and arm movements. Res. Q. Exerc. Sport. 1 (2002), pp.98-106.
DOI: 10.1080/02701367.2002.10608996
Google Scholar
[12]
S. Weyand, P. Sternlight, D. Bellizzi, M. J. and Wright. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 89 (2001), p.1991–(1999).
DOI: 10.1152/jappl.2000.89.5.1991
Google Scholar
[13]
D. F. Stegeman. Standards for surface electromyography: The European project Surface EMG for Standards for surface electromyography: the European project. Surface EMG for non-invasive assessment of muscles (SENIAM). January (2007).
Google Scholar
[14]
P. Konrad. The ABC of EMG. A practical introduction to kinesiological electromyography.1 (2006), P. 30-35.
Google Scholar
[15]
C.J. De Luca, L.D. Gilmore, M. Kuznetsov, and S.H. Roy, Filtering the surface EMG signal: Movement artifact and baseline noise contamination. Journal of biomechanics, 43 (2010), pp.1573-1579.
DOI: 10.1016/j.jbiomech.2010.01.027
Google Scholar
[16]
R. M. Howard. Epidemiological surveillance of AIDS in Spain: situation on June 30. [Spanish]. Bol. Epidemiol. Sem.12 (2002), p.121–124.
Google Scholar
[17]
A. Phinyomark, "Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 8 (2012), p.7420–743.
Google Scholar
[18]
W. Huang and D. MacFarlane. Fast fourier transform and matlab implementation. The University of Texas at Dallas. Dr. Duncan L. MacFarlane. Web, 24, (2016).
Google Scholar
[19]
D. Roman-liu, T. Tokarski and K. Wo. Quantitative assessment of upper limb muscle fatigue depending on the conditions of repetitive task load. (6) 2004, p.671–682.
DOI: 10.1016/j.jelekin.2004.04.002
Google Scholar
[20]
M. Al Zaman, A. Sharmin, T. Khan and Ferdjallah. Muscle fatigue analysis in young adults at different MVC levels using EMG metrics.," in Proceedings 2007 IEEE SoutheastCon, p.390–394.
DOI: 10.1109/secon.2007.342930
Google Scholar
[21]
T. Y. Fukuda. Root mean square value of the electromyographic signal in the isometric torque of the quadriceps, hamstrings and brachial biceps muscles in female subjects. J. Appl. Res,1(2010), p.32–39.
Google Scholar
[22]
F. M. Spektra and M. Ultrajahooim. Evaluation of the mean power frequency of the emg signal power spectrum at endurance levels during fatiguing isometric muscle contractions. (2008).
Google Scholar
[23]
M. Sarillee, M. Hariharan, M.N. Anas, M.I. Omar, M.N. Aishah, and Q.W. Oung, November. Assessment muscle fatigue using statistical study and classification: A review. In 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE) (pp.206-211). IEEE.
DOI: 10.1109/iccsce.2015.7482185
Google Scholar
[24]
Xie. H and Z. Wang. Mean frequency derived via Hilbert-Huang transform with application to fatigue EMG signal analysis. Computer methods and programs in biomedicine, 82 (2006), pp.114-120.
DOI: 10.1016/j.cmpb.2006.02.009
Google Scholar
[25]
E. Bergamini. Biomechanics of sprint running: a methodological contribution. (Doctoral dissertation). (2011).
Google Scholar
[26]
M. A. Nussbaum. Static and dynamic myoelectric measures of shoulder muscle fatigue during intermittent dynamic exertions of low to moderate intensity. European journal of applied physiology, 85(2001). p.299–309.
DOI: 10.1007/s004210100454
Google Scholar