Development of Novel Poly (ɛ-Caprolactone)/ Fluorine Substituted Hydroxyapatite Bilayer Coated 316L Ss for In Vitro Corrosion Protection

Article Preview

Abstract:

A novel biocompatible fluorine substituted hydroxyapatite (F-HAp) / poly (ε-caprolactone) (PCL) bilayer coating on 316L SS with superior adhesion strength and admirable corrosion protection properties. PCL slurry was coated on 316L SS as a first layer using dip coating method followed by F-HAp coating as the second layer using electrodeposition method. The structural and functional group analysis of bilayer coatings were characterized by different analytical technique. Also, the mechanical properties of the bilayer coating showed higher adhesion strength than HAp and F-HAp coatings on 316L SS. The potentiodynamic polarization and electrochemical impedance spectroscopy results indicated that the admirable corrosion protection nature. The in vitro bioactivity test for coated 316L SS substrate was carried out by soaking it in the SBF solution, the induced apatite formation confirming the improved bioactivity of the specimen. Further, dissolution of metal ions was considerably reduced which was confirmed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The in vitro cell–material interaction of the bilayer coating was studied with human osteosarcoma MG63 cells for cell viability at 3, 7, 14 and 21 days of incubation and good biocompatibility was observed. The obtained results show that the F-HAp/PCL bilayer coating provides effective corrosion protection and enhanced bioactivity.

You might also be interested in these eBooks

Info:

Pages:

84-108

Citation:

Online since:

November 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Gopi, V. Collins Arun Prakash, L. Kavitha. Evaluation of hydroxyapatite coatings on borate passivated 316L SS in Ringer's solution. Mater. Sci. Eng C.29 (2009) 955-958.

DOI: 10.1016/j.msec.2008.08.020

Google Scholar

[2] X. Yunchang, H. Kaifu, T. Hu, T. Guoyi, K.C. Paul. Influence of aggressive ions on the degradation behavior of biomedical Magnesium alloy in physiological environment. Acta. Biomater, 4(2008) 2008-2015.

Google Scholar

[3] G.S. Frankela, N. Sridhar. Understanding localized corrosion. Mater. Today. 11(2008) 38-44.

Google Scholar

[4] A.M. Al-Zahrani, H.W. Pickering. IR voltage switch in delayed crevice corrosion and active peak formation detected using a repassivation-type scan. Electrochim. Acta.50 (2005) 3420-3435.

DOI: 10.1016/j.electacta.2004.12.017

Google Scholar

[5] T.M. Sridhar, U. Kamachi Mudali, M. Subbaiyan. Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel. Corros Sci.45 (2003) 237-252.

DOI: 10.1016/s0010-938x(02)00091-4

Google Scholar

[6] T. Eliades, H. Pratsinis, D. Kletsas, G. Eliades, M. Makou. Characterization and cytotoxicity of ions released from stainless steel and nickel-titanium orthodontic alloys. Am J Orthod Dento facial Orthop. 125 (2004) 24-29.

DOI: 10.1016/j.ajodo.2003.09.009

Google Scholar

[7] A. Parsapour, S.N. Khorasani, M.H. Fathi. Effect of Surface Treatment and metallic coating on corrosion behavior and biocompatibility of surgical 316L Stainless Steel Implant. J. Mater. Sci. Technol. 28 (2012) 125-131.

DOI: 10.1016/s1005-0302(12)60032-2

Google Scholar

[8] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterial 27 (2006) 1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[9] Y. Wang, L. Liu, S. Guo, Polym.. Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Poly. Degrad. Stab.95 (2010) 207-213.

DOI: 10.1016/j.polymdegradstab.2009.11.023

Google Scholar

[10] L. Shor, S. Guceri, X. Wen, M. Gandhi, W. Sun. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28 (2007) 5291-5297.

DOI: 10.1016/j.biomaterials.2007.08.018

Google Scholar

[11] S.C. Baker, G. Rohman, J. Southgate, N.R. Cameron. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials 30 (2009) 1321-1328.

DOI: 10.1016/j.biomaterials.2008.11.033

Google Scholar

[12] W. Weng, S. Zhang, K. Cheng, H. Qu, P. Du, G. Shen, J. Yuan, G. Han. Sol– gel preparation of bioactive apatite films. Surf. Coat. Tech. 167 (2003) 292-296.

DOI: 10.1016/s0257-8972(02)00922-2

Google Scholar

[13] S. Cazalbou, C. Combes, D. Eichert, C.J. Rey. Adaptative physico-chemistry of bio-related calcium phosphate. Mater. Chem. 14 (2004) 2148-2153.

DOI: 10.1039/b401318b

Google Scholar

[14] G. Mabilleau, R. Filmon, P.K. Petrov, M.F. Basle, A. Sabokbar, D. Chappard, chromium and nickel affect hydroxyapatite crystal growth in vitro. Biomaterial 6 (2010) 1555-1560.

DOI: 10.1016/j.actbio.2009.10.035

Google Scholar

[15] S. Kannan, J.M.F. Ferreira. Synthesis and thermal stability of hydroxyapatite−β-Tricalcium phosphate composites with co-substituted sodium, magnesium, and fluorine. Chem. Mater.18 (2006) 198-203.

DOI: 10.1021/cm051966i

Google Scholar

[16] K.A. Gross, L.M. Rodriguez lorenzo. Sintered hydroxyfluorapatites. Part II: mechanical properties of solid solutions determined by microindentation. Biomaterials 25 (2004)1385-1394.

DOI: 10.1016/s0142-9612(03)00636-7

Google Scholar

[17] K.A. Bhadang, K.A. gross. Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings. Biomaterials. 25 (2004) 4935-4945.

DOI: 10.1016/j.biomaterials.2004.02.043

Google Scholar

[18] E. Gyorgy, S. Grigorescu, G. Socol, I.N. Mihailescu, D. Janackovic, A. Dindune Z. Kanepe, E. Palcevskis, E.L. Zdrentu, S.M. Petrescu Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition. Appl. Surf. Sci. 253 (2007) 7981-7986.

DOI: 10.1016/j.apsusc.2007.02.146

Google Scholar

[19] A.L Oliveira, R.L. Reis, P. Li. Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis. J. Biomed. Mater. Res. B: Appl. Biomater. 83 (2007) 258-265.

DOI: 10.1002/jbm.b.30791

Google Scholar

[20] P. Ducheyne, S. Radin, M. Heughebaert. Calcium phosphate ceramic coatings on porous titanium: effect of structure and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution.J.C. Heughebaert, Biomaterials 11 (1990) 244-254.

DOI: 10.1016/0142-9612(90)90005-b

Google Scholar

[21] M. Manso, C. Jimenez, C. Morant, P. Herrero, J.M. Martinez-Duart. Electrodeposition of hydroxyapatite coatings in basic conditions. Biomaterials 21 (2000)1755-1761.

DOI: 10.1016/s0142-9612(00)00061-2

Google Scholar

[22] I. Pereiro, C. Rodriguez-Valencia, C. Serra, E.L. Solla, J. Serra, P. Gonzalez. Pulsed laser deposition of strontium-substituted hydroxyapatite coatings.Appl. Surf. Sci. 258 (2012) 9192-9197.

DOI: 10.1016/j.apsusc.2012.04.063

Google Scholar

[23] D. Gopi, V. Collins ArunPrakash, L. Kavitha, S. Kannan, P.R. Bhalaji, E. Shinyjoy, J.M.F. Ferreira A facile electrodeposition of hydroxyapatite onto borate passivated surgical grade stainless steel. Corros. Sci., 53 (2011) 2328-2334.

DOI: 10.1016/j.corsci.2011.03.018

Google Scholar

[24] D. Gopi, S. Ramya, D. Rajeswari, M. Surendiran, D. Kavitha. Development of strontium and magnesium substituted porous hydroxyapatite/poly(3,4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells. Colloids. Surf. B. 114 (2014) 234-240.

DOI: 10.1016/j.colsurfb.2013.10.011

Google Scholar

[25] M.F. MohdFaiz, A.K. Mohammed Rafiq, I. Nida, H. Mas Ayu, H. Rafaqat, Surf. Coat. Tech.245 (2014) 102-107.

Google Scholar

[26] S. Saravanan, A.Karthika, M. Surendiran, L. Kavitha D. Gopi Electrodeposition of cerium substituted hydroxyapatite coating on passivated surgical grade stainless steel for biomedical application Inter. J Chem Tech Res. 7 (2013) 533-538.

Google Scholar

[27] T. Kokubo, T. Takadama 2006 How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27 2907-2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[28] R. Cristescu, A. Doraiswamy, G. Socol, S. Grigorescu, E. Axente, D. Mihaiescu, A. Moldovan, R.J. Narayan, I. Stamatin, I.N. Mihailescu, B.J. Chisholm, D.B. Polycaprolactone biopolymer thin films obtained by matrix assisted pulsed laser evaporation.Chrisey, Appl. Surf. Sci. 253 (2007) 6476-6479.

DOI: 10.1016/j.apsusc.2007.01.064

Google Scholar

[29] Y. Chen. X. Miao. Effect of fluorine addition on the corrosion resistance of hydroxyapatite ceramics. Ceramic. Int. 30 (2004) 1961-1965.

DOI: 10.1016/j.ceramint.2003.12.182

Google Scholar

[30] M.R. Nikpour S.M. Rabiee M. Jahanshahi. Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications. Composites: Part B 43 (2012) 1881-1886.

DOI: 10.1016/j.compositesb.2012.01.056

Google Scholar

[31] H. Yoshikawa. Bone tissue engineering with porous hydroxyapatite ceramics. A. Myoui, J. Artif. Organs.8 (2005)131-136.

DOI: 10.1007/s10047-005-0292-1

Google Scholar

[32] J. Lucas Flourine in the natural environment. J. Fluor. Chem. 41 (1988) 1-8.

Google Scholar

[33] S. Kannan, J.H.G. Rocha, S. Agathopoulos, J.M.F. Ferreira. Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Acta Biomater.3 (2007) 243-249.

DOI: 10.1016/j.actbio.2006.09.006

Google Scholar

[34] N. Johari, M.H. Fathi, M.A. Golozar. The effect of fluorine content on the mechanical properties of poly (ɛ-caprolactone)/nano-Fluoridated hydroxyapatite scaffold for bone-tissue engineering. Ceram. Intl. 37 (2011) 3247-3251.

DOI: 10.1016/j.ceramint.2011.05.119

Google Scholar

[35] S. Kannan, Z.F. Goetz-Neunhoeffer, Y.J. Neubauer, J.M.F. Ferreira. Ionic Substitutions in Biphasic Hydroxyapatite and β-Tricalcium Phosphate Mixtures: Structural Analysis by Rietveld Refinement. J. Am. Ceram. Soc.91 (2008) 1-12.

DOI: 10.1111/j.1551-2916.2007.02117.x

Google Scholar

[36] Elliott J.C. (Elsevier, Amsterdam, 1994).

Google Scholar

[37] F. Freund and R. M. Knobel. Distribution of fluorine in hydroxyapatite studied by infrared spectroscopy. J. Chem. Soc. Dalton Trans. 11 (1977) 1136-1140.

DOI: 10.1039/dt9770001136

Google Scholar

[38] H.W. Kim, Y.J. Noh, Y.H. Koh, H.E. Kim. Enhanced performance of fluorine substituted hydroxyapatite composites for hard tissue engineering J Mater Sci. Mater Med.14 (2003) 899-944.

Google Scholar

[39] L. Jha, S.M. Best, J.C. Knowles, I. Rehman, J.D. Santos, W. Bonfield Preparation and characterization of fluoride-substituted apatites. J. Mater. Sci. Mater Med. 8 (1997) 185-191.

Google Scholar

[40] Z. Sam, X. Zeng, Y. Wang, K. Cheng, W. Weng. Adhesion strength of sol–gel derived fluoridated hydroxyapatite coatings. Surf. Coat. Tech. 200 (2006) 6350-6354.

DOI: 10.1016/j.surfcoat.2005.11.033

Google Scholar

[41] F.H. Jones Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf. Sci. Rep.42 (2001) 75-205.

DOI: 10.1016/s0167-5729(00)00011-x

Google Scholar

[42] W. Wu, H. Zhuang, G.H. Nancollas. Heterogeneous nucleation of calcium phosphates on solid surfaces in aqueous solution. J Biomed Mater Res. 35 (1997) 93-99.

DOI: 10.1002/(sici)1097-4636(199704)35:1<93::aid-jbm9>3.0.co;2-h

Google Scholar

[43] S. Prakash Parthiban, R.V. Sugandhi, E.K. Girija, K. Elayaraja, P.K. Kulriya, Y.S. Katharria, F. Singh, I. Sulania, A. Tripathi, K. Asokan, D. Kanjilal, S. Yadav, T.P Singh, Y. Yokogawa, S. Narayana Kalkura.  Effect of swift heavy ion irradiation on hydrothermally synthesized hydroxyapatite ceramics. Nucl. Instrum. Method Phys. Res. B.266 (2008) 911-917.

DOI: 10.1016/j.nimb.2008.02.026

Google Scholar

[44] D. Kang, D. Amarasiriwardena, A. H. Goodma. Application of laser ablation–inductively coupled plasma-mass spectrometry (LA–ICP–MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layers and pulp. Anal. Bioanal. Chem. 378 (2004) 1608-1615.

DOI: 10.1007/s00216-004-2504-6

Google Scholar

[45] H. MohdIzzat, S. Naznin, H. Salehhuddin. Bioactivity Assessment of Poly(ɛ-caprolactone)/ Hydroxyapatite Electrospun Fibers for Bone Tissue Engineering Application. Tissue. Engg. App. 2014 (2014) ID 573238.

DOI: 10.1155/2014/573238

Google Scholar

[46] T. Ueno, M. Yamada, T. Suzuki, H. Minamikawa, N. Sato, N. Enhancement of bone–titanium integration profile with UV-photofunctionalized titanium in a gap healing model. Hori, Biomaterial. 31 (2010) 1546-1553.

DOI: 10.1016/j.biomaterials.2009.11.018

Google Scholar

[47] M. Okada. Fabrication of high-dispersibility nanocrystals of calcined hydroxyapatite T. Furuzono. J. Mater. Sci. 41 (2006) 6134-6137.

DOI: 10.1007/s10853-006-0444-6

Google Scholar