Biocompatibility of Hydrophilicity Improved Apatite Cement

Article Preview

Abstract:

Hydrophilicity of apatite cement was increased after O3 gas treatment on apatite cement (AC) powder. It results on the improvement of the handling and mechanical properties of set AC. Behavior of osteoblastic cells to O3-treated set AC was evaluated including initial cell attachment, morphology of the attached cells and proliferation using rat bone marrow cell (RBM). Cells’ response to the set AC was the same regardless of O3 treatment. The cells well attached and spread with filopodial extensions even over the O3-treated set AC specimens. The rates of cell proliferation on set AC were also the same regardless of O3 treatment. The result indicated O3 treatment of AC powder would not affect to the osteoblast cell response of set AC.

You might also be interested in these eBooks

Info:

Pages:

124-129

Citation:

Online since:

November 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.E. Brown, L.C. Chow, Cements research progress, in P.W. Brown (Eds), Am. Ceram. Soc. Bull. Westerville, 1987, pp.351-379.

Google Scholar

[2] T. Kokubo, Bioceramics and their Clinical Applications, first ed. Washington DC, New York, (2008).

Google Scholar

[3] K. Ishikawa, Bone substitute fabrication based on dissolution-precipitation reactions, Materials. 3 (2010) 1138-1155.

DOI: 10.3390/ma3021138

Google Scholar

[4] K. Ishikawa, Bioactive ceramics, in P. Ducheyne (Eds), Comprehensive Biomaterials, first ed, Elsevier, Amsterdam, 2011, pp.273-274, 276.

Google Scholar

[5] X. Fu, W. Lu, D.D.L. Chung, Ozone treatment of carbon fiber for reinforcing cement, Carbon. 39 (1998) 1337-1345.

DOI: 10.1016/s0008-6223(98)00115-8

Google Scholar

[6] K. Thomas, P.E Hoggan, L. Mariey, J. Lamotte, J.C. Lavalley, Experimental and theoretical study of ozone adsorption on alumina, Catal. Lett. 46 (1997) 77-82.

DOI: 10.1023/a:1019017123596

Google Scholar

[7] S. Fukuzaki, H. Urano, T. Yamaguchi, Effect of modification of alumina surfaces by ozone on adsorption behavior of bovine serum albumin at alumina-water interfaces, J. Ferment. Bioeng. 84 (1997) 407-413.

DOI: 10.1016/s0922-338x(97)82000-4

Google Scholar

[8] R.C. Sullivan, T. Thornberry, J.P.D. Abbat, Ozone decomposition kinetics on alumina: effect of ozone partial pressure, relative humidity and repeated oxidation cycles, Atmosph. Chem. Phys. 4 (2004) 1301-1310.

DOI: 10.5194/acp-4-1301-2004

Google Scholar

[9] C. Tizaoui, M.J. Slater, The design of an industrial waste-water treatment process using adsorbed ozone on silica gel, Proc. Safe. Environ. Protect. 81 (2003) 107-114.

DOI: 10.1205/095758203321832570

Google Scholar

[10] X. Fu, D.D.L Chung, Improving the bond strength between steel rebar and concrete by ozone treatment of rebar and polymer addition to concrete, Cem. Concr. Res. 27 (1997) 643-648.

DOI: 10.1016/s0008-8846(97)00057-4

Google Scholar

[11] W. Lu, X. Fu, D.D.L Chung, a comparative study of wettability of steel, carbon, and polyethylene fibers by water, Cem. Concr. Res. 28 (1998) 783-786.

DOI: 10.1016/s0008-8846(98)00056-8

Google Scholar

[12] D.E. King, Oxidation of gold by ultraviolet light and ozone at 25°C (abstract), J. Vac. Sci. Technol., A.13 (1995) 1247-1253.

Google Scholar

[13] S. Suzuki, Y. Hori, O. Koga, Decomposition of ozone on natural sand, Bull. Chem. Soc. Jpn. 52 (1979) 3103-3104.

DOI: 10.1246/bcsj.52.3103

Google Scholar

[14] I. Artilia, M. Maruta, G. Kawachi, K. Tsuru, K. Ishikawa. Improvement of handling property of apatite cement paste, Arch. BioCeram. Res. 10 (2010) 94-97.

Google Scholar

[15] M. Hott, B. Noel, D. Bernache-Assolant, C. Rey, P.J. Marie, Proliferation and differentiation of human trabecular osteoblatic cells on hydroxyapatite, J. Biomed Mat Res. 37 (1997) 508-516.

DOI: 10.1002/(sici)1097-4636(19971215)37:4<508::aid-jbm9>3.0.co;2-p

Google Scholar

[16] T. Yuasa, Y. Miyamoto, K. Ishikawa, M. Takechi, Y. Momota, S. Tatehara, M. Nagayama, Effect of apatite cement on proliferation and differentiation of human osteoblast in vitro, Biomaterials. 25 (2004) 1159-1166.

DOI: 10.1016/j.biomaterials.2003.08.003

Google Scholar

[17] H. Zreiqat, P. Evans, C.R. Howlerr, Effect of surface chemical modification of bioceramic on phenotype of human bone-derived cells, J. Biomed Mat Res. 44 (1999) 389-396.

DOI: 10.1002/(sici)1097-4636(19990315)44:4<389::aid-jbm4>3.0.co;2-o

Google Scholar

[18] I.H. Loh, Plasma surface modification in biomedical application, Med. Dev. Tech. 10 (1999) 11-12.

Google Scholar

[19] Y.L. Chang, C.M. Stanford, J.S. Wefel, J.C Keller, Osteoblastic cell attachment to hydroxyapatite-coating implant surface ini vitro, Int. J. of Oral Maxillofac. Implants. 14 (1999) 239-247.

Google Scholar

[20] D.D Deligianni, N.D. Katsala, P.G. Koutsoukos, Y.F. Missirlis, Effect of surface rougness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength, Biomaterials. 22 (2001) 87-96.

DOI: 10.1016/s0142-9612(00)00174-5

Google Scholar

[21] H. Kumagai, K. Kusunoki, T. Kobayashi, surface modification of polimers by thermal ozone treatments, AZojomo. 3 (2007) 1-10.

Google Scholar