[1]
R. Florencio-Silva, GR. Sasso, E. Sasso-Cerri, et al. Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res Int 2015; 2015: 421746.
DOI: 10.1155/2015/421746
Google Scholar
[2]
M. Kamitakahara, C. Ohtsuki , T. Miyazaki. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Journal of biomaterials applications, nov. 2008. v. 23, n. 3, p.197–212.
DOI: 10.1177/0885328208096798
Google Scholar
[3]
CG. Finkemeier. Bone-grafting and bone-graft substitutes. The Journal of bone and joint surgery. American volume, mar. 2002 v. 84-A, n. 3, p.454–64.
DOI: 10.2106/00004623-200203000-00020
Google Scholar
[4]
LP. Faverani, G. Ramalho-Ferreira, PHD. Santos et al. Técnicas cirúrgicas para a enxertia óssea dos maxilares - revisão da literatura. Rev. Col. Bras. Cir. [Internet]. 2014 Feb [cited 2020 May 17] 41(1):61-67. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid =S010069912014000100061&lng=enhttp://dx.doi.org/10.1590/S010069912014000100012.
Google Scholar
[5]
NR. Pateland, PG Piyush. A Review on Biomaterials: Scope , Applications & Human Anatomy Significance. International Journal of Emerging Technology and Advanced Engineering. April 2012 Website: www.ijetae.com ISSN 2250-2459, Volume 2, Issue 4.
Google Scholar
[6]
LSAF. Oliveira, CS. Oliveira, AP Machado et. al. Biomateriais com aplicação na regeneração óssea – método de análise e perspectivas futuras. Revista de Ciências Médicas e Biológicas. 2010 9(Supl.1):37-44.
DOI: 10.9771/cmbio.v9i1.4730
Google Scholar
[7]
MAC. Sinhoreti, RP. Vitti, L. Correr-Sobrinho. Biomateriais na Odontologia: panorama atual e perspectivas futuras. Rev. Assoc. Paul. Cir. Dent. Sao Paulo 2013 vol.67 n.4.
Google Scholar
[8]
RG. Carrodeguas, S. De Aza . α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta biomaterialia, v. 7, n. 10, p.3536–46, out. (2011).
DOI: 10.1016/j.actbio.2011.06.019
Google Scholar
[9]
EY. Kawachi, CA. Bertran, RR. Reis . et al Biocerâmicas Tendências e Perspectivas de uma área Interdisciplinar. Química Nova, 2000, v. 23, n. 4, p.518–522.
DOI: 10.1590/s0100-40422000000400015
Google Scholar
[10]
IW. Donald. Review: Methods for improving the mechanical properties of glass. Journal of materials, 1989; v. 24, pp.4177-4208.
Google Scholar
[11]
R. Krüger.; J. Groll,. Fiber reinforced calcium phosphate cements - On the way to degradable load bearing bone substitutes? Biomaterials, v. xxx, pp.1-14, (2012).
DOI: 10.1016/j.biomaterials.2012.04.053
Google Scholar
[12]
A. Kelly. Interface effects and the work of fracture of a fibrous composite. Proc. Roy. Soc. Lond. A; 1970; 319, 95-116.
Google Scholar
[13]
HH Xu, JB. Quinn. Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity. Biomaterials. 2002; 23(1): 193‐202.
DOI: 10.1016/s0142-9612(01)00095-3
Google Scholar
[14]
S. Bose, S. Tarafder, SS. Banerjee, NM. Davies, A. Bandyopadhyay. Understanding in vivo response and mechanical property variation in MgO, SrO and SiO₂ doped β-TCP. Bone. 2011; 48(6):1282‐1290.
DOI: 10.1016/j.bone.2011.03.685
Google Scholar
[15]
DA. Cortés, A. Medina, JC. Escobedo, S. Escobedo and MA. López. Effect of wollastonite ceramics and bioactive glass onthe formation of a bonelike apatite layer on a cobalt base alloy. Journal Biomedical Materials Research Part A, 2004; vol. 70A, no. 2,p.341–346.
DOI: 10.1002/jbm.a.30092
Google Scholar
[16]
M. Motisuke., & CA. Bertran. Síntese de whiskers, de CaSiO3 em fluxo salino para elaboração de biomateriais. Cerâmica, 2012 58(348), 504-508. https://doi.org/10.1590/S0366-69132012000400015.
DOI: 10.1590/s0366-69132012000400015
Google Scholar
[17]
M. Motisuke,. Síntese de cimento ósseo a base de α-TCP e estudo da influência do Mg e do Si em suas propriedades finais. Phd Thesis, Campinas State University, Brazil, (2010).
DOI: 10.47749/t/unicamp.2010.479479
Google Scholar
[18]
J. Bancroft. Theory and Practice of Histological Techniques (6th Edition). London. Churchill Livingstone, Elsevier. (2008).
Google Scholar
[19]
L. Hench. Biomateriais: uma introdução. In: RL. Oréfice , MM. Magalhães, HS. Mansur, eds. Biomateriais: fundamentos e aplicações. Rio de Janeiro:Cultura Médica;2006. pp.1-7.
Google Scholar
[20]
M. Gutierres, MA. Lopes, NS. Hussain et al. Substitutos Ósseos: conceitos gerais e estado actual. Arq Med [Internet]. 2005 Jul [citado 2020 Maio 21] ; 19( 4 ): 153-162. Disponível em: http://www.scielo.mec.pt/scielo.php?script=sci_arttext&pid=S0871-34132005000300004&lng=pt.
Google Scholar
[21]
ALR. Pires,, and AM. Moraes. Improvement of the mechanical properties of chitosan-alginate wound dressings containing silver through the addition of a biocompatible silicone rubber. J. Appl. Polym. Sci. 2015; 132:41686.
DOI: 10.1002/app.41686
Google Scholar
[22]
HAI. Cardoso, M. Motisuke , CAC Zavaglia. The Influence of Three Additives on the Setting Reaction Kinetics and Mechanical Strength Evolution of [Alpha]-Tricalcium Phosphate Cements. Key Engineering Materials 2011; 493–494:397–402. https://doi.org/10.4028/www.scientific.net/ kem.493-494.397.
DOI: 10.4028/www.scientific.net/kem.493-494.397
Google Scholar
[23]
SK. Padmanabhan, F. Gervaso, M. Carrozzoet al. Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering. Ceram Int 39; 2013; 619–627.
DOI: 10.1016/j.ceramint.2012.06.073
Google Scholar
[24]
GG. Porto, BCE. Vasconcelos, ESS. Andrade et al. Is a 5 mm rat calvarium defect really critical?. Acta Cir. Bras. [Internet]. 2012 Nov [cited 2020 May 21]; 27( 11 ): 757-760. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-86502012001100003&lng =en. https://doi.org/10.1590/S010286502012001100003.
DOI: 10.1590/s0102-86502012001100003
Google Scholar
[25]
JP. Schmitz, JO. Hollinger. The Critical Size Defect as an Experimental Model for Craniomandibulofacial Nonunions, Clinical Orthopaedics and Related Research: April 1986 - Volume 205 - Issue - pp.299-308.
DOI: 10.1097/00003086-198604000-00036
Google Scholar
[26]
AK. Gosain, L. Song, P.Yu, et al. Osteogenesis in cranial defects: reassessment of the concept of critical size and the expression of TGF-beta isoforms. Plast Reconstr Surg. 2000;106(2):360‐372.
DOI: 10.1097/00006534-200008000-00018
Google Scholar
[27]
OO. Aalami, RP. Nacamuli, KA. Lenton, et al. Applications of a mouse model of calvarial healing: differences in regenerative abilities of juveniles and adults. Plast Reconstr Surg. 2004;114(3):713‐720.
DOI: 10.1097/01.prs.0000131016.12754.30
Google Scholar
[28]
JB. Mulliken, J. Glowacki. Induced osteogenesis for repair and construction in the craniofacial region. Plast Reconstr Surg. 1980;65(5):553‐560.
DOI: 10.1097/00006534-198005000-00001
Google Scholar
[29]
PN. De Aza, AH. De Aza, P. Pena et al. Bioactive glasses ang glass-ceramics. Boletin de la sociedad Espanõla de Cerámica y Vidrio, 2007; n. c, p.45–55.
DOI: 10.3989/cyv.2007.v46.i2.249
Google Scholar
[30]
CL. Turrer, FPM. Ferreira . Biomateriais em cirurgia Craniomaxilofacial: príncipios e aplicações – revisão de literatura. Ver, Bras. Cir. Plást. 2008, 23(3):234-239.
Google Scholar
[31]
JA. Domingues, M. Motisuke, CA. Betran et al. Addition of Wollastonite Fibers to Calcium Phosphate Cement Increases Cell Viability and Stimulates Differentiation of Osteoblast-Like Cells. Hindawi THe Scientific World Journal. 2017; Article ID 5260106, 6 pages https://doi.org/10.1155/2017/5260106.
DOI: 10.1155/2017/5260106
Google Scholar
[32]
YF. Chou, W. Huang, JC. Dunn, TA. Miller, BM. Wu. The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression. Biomaterials. 2005;26(3):285‐295.
DOI: 10.1016/j.biomaterials.2004.02.030
Google Scholar
[33]
APV. Pereira, WL. Vasconcelos and RL. Oréfice . Novos biomateriais: híbridos orgânico-inorgânicos bioativos. Polímeros, 1999; 9(4), 104 109. https://doi.org/10.1590/S0104-14281999000400018.
DOI: 10.1590/s0104-14281999000400018
Google Scholar
[34]
AC. Guastaldi and AH. Aparecida. Fosfatos de cálcio de interesse biológico: importância como biomateriais, propriedades e métodos de obtenção de recobrimentos. Química Nova, 2010; 33(6), 1352-1358. https://doi.org/10.1590/S0100-40422010000600025.
DOI: 10.1590/s0100-40422010000600025
Google Scholar
[35]
AS. Azevedo; MJC.Sá; PIN. Neto et al. Avaliação de diferentes proporções de fosfato de cálcio na regeneração do tecido ósseo de coelhos: estudo clínicocirúrgico, radiológico e histológico. Braz. J. Vet. Res. Anim. Sci., 2012; v.49, pp.12-18.
DOI: 10.11606/issn.2318-3659.v49i1p12-18
Google Scholar
[36]
FCM. Driessens, MG. Boltong, EAP. De Maeyer et.al. IN:RZ,Legeros, .; LP, Legeros, . (eds.) Bioceramics, 1998 Vol. 11 (Proceedings of the 11th International Symposium on Ceramics in Medicine) New York, World Scientific Publishing, pp.231-233.
DOI: 10.1142/9789814527842
Google Scholar
[37]
EC. Carlo, APB. Borges, MIV.Vargas et al. Resposta tecidual ao compósito 50% hidroxiapatita: 50% poli-hidroxibutirato para substituição óssea em coelhos. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 2009 61(4), 844-852. https://doi.org/10.1590/S0102-09352009000400011.
DOI: 10.1590/s0102-09352009000400011
Google Scholar
[38]
CC. Vital, APB. Borges, CC. Fonseca et al. Biocompatibilidade e comportamento de compósitos de hidroxiapatita em falha óssea na ulna de coelhos. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 2006 58(2), 175-183. https://doi.org/10.1590/S0102-09352006000200005.
DOI: 10.1590/s0102-09352006000200005
Google Scholar
[39]
DC. Greenspan . Bioactive ceramic implant materials.Curr. Op. Sol. St. Mat. Sci. 4 (1999) 389, Volume 4 Issue 4 August 1999, Pages 389-393.
Google Scholar