Fabrication of Pentoxifylline-Loaded Hydroxyapatite/Alginate Scaffold for Bone Tissue Engineering

Article Preview

Abstract:

Background: Hydroxyapatite (HAP), as a common biomaterial in bone tissue engineering, can be fabricated in combination with other osteogenic agents. Pentoxifylline (PTX) is demonstrated to have positive roles in bone defect healing. Since local administration can diminish the systemic side effects of the drug, the objectives of the current in vitro study were to find the effects of PTX on the osteoblast functions for tissue engineering applications. Methods: a HAP scaffold was fabricated by casting the HAP slurry within polyurethane foam. The scaffold was enriched with 5 mg/mL PTX. Alginate (Alg) was used as drug carrier to regulate the PTX releasing rate. MG-63 osteosarcoma cells were cultured on 3D scaffolds and 2D Alg films in the presence or absence of PTX. Results: PTX did not affect the cell viability, attachment and phenotype. Also, the ultrastructure of the scaffolds was not modified by PTX enrichment. Alizarin red S staining showed that PTX has no effect on calcium deposition. Besides, Raman confocal microscopy demonstrated an increase in the organic matrix formation including proline, valine and phenylalanine deposition (represented collagen). Although PTX increased the total protein secretion, it led to a decrease in the alkaline phosphatase activity and vascular endothelial growth factor (VEGF) content. PTX reduced the hydration and degradation rates and it was released mainly at the first 24 hours of incubation. Conclusion: Based on our in vitro study, application of engineered PTX-loaded HAP scaffold in bone regeneration can act on behalf of organic matrix production, but not angiogenesis and mineralization.

You might also be interested in these eBooks

Info:

Pages:

25-40

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Chen , B. Li, X. Xiao, Q. Meng, W. Li, Q. Yu, J. Bi, Y, Cheng, Z. Qu, Preparation and evaluation of an Arg-Gly-Asp-modified chitosan/hydroxyapatite scaffold for application in bone tissue engineering, Mol Med Rep. 12 (2015) 7263-70;.

DOI: 10.3892/mmr.2015.4371

Google Scholar

[2] S. Mirza, I. Zia, R. Jolly, S. Kazmi, M. Owais, M. Shakir, Synergistic combination of natural bioadhesivebael fruit gum and chitosan/nano-hydroxyapatite: A ternary bioactive nanohybrid for bone tissue engineering, Int J BiolMacromol. 119 (2018) 215-224;.

DOI: 10.1016/j.ijbiomac.2018.07.128

Google Scholar

[3] X. Qi, Y. Huang, D. Han, J. Zhang, J. Cao, X. Jin, J. Huang, X. Li, T, Wang, Three-dimensional poly (ε-caprolactone)/hydroxyapatite/collagen scaffolds incorporating bone marrow mesenchymal stem cells for the repair of bone defects, Biomed Mater. 11 (2016);.

DOI: 10.1088/1748-6041/11/2/025005

Google Scholar

[4] H. Fan, SM. Kim, YJ. Cho, MY. Eo, SK. Lee, KM. Woo, New approach for the treatment of osteoradionecrosis with pentoxifylline and tocopherol, Biomater Res. 29 (2014) 18-13;.

DOI: 10.1186/2055-7124-18-13

Google Scholar

[5] MM. Vashghani Farahani, R. Ahadi, M. Abdollahifar, M. Bayat, The effects of pentoxifylline administration on fracture healing in a postmenopausal osteoporotic rat model, Lab Anim Res.33 (2017) 15-23;.

DOI: 10.5625/lar.2017.33.1.15

Google Scholar

[6] Y. Atalay, N. Gunes, MD. Guner, V. Akpolat, MS. Celik, R. Guner, Pentoxifylline and electromagnetic field improved bone fracture healing in rats, Drug Des DevelTher. 9 (2015) 5195-201;.

DOI: 10.2147/dddt.s89669

Google Scholar

[7] G. Rawadi, C. Ferrer, S. Spinella-Jaegle, S. Roman-Roman, Y. Bouali, R. Baron, 1-(5-oxohexyl)-3,7-Dimethylxanthine, a phosphodiesterase inhibitor, activates MAPK cascades and promotes osteoblast differentiation by a mechanism independent of PKA activation (pentoxifylline promotes osteoblast differentiation), Endocrinology. 142 (2001) 4673-82.

DOI: 10.1210/endo.142.11.8499

Google Scholar

[8] H. Horiuchi, N. Saito, T. Kinoshita, S. Wakabayashi, T. Tsutsumimoto, K. Takaoka, Enhancement of bone morphogenetic protein-2-induced new bone formation in mice by the phosphodiesterase inhibitor pentoxifylline, Bone. 28 (2001) 290-4.

DOI: 10.1016/s8756-3282(00)00450-6

Google Scholar

[9] T. Kinoshita, S. Kobayashi, S. Ebara, Y. Yoshimura, H. Horiuchi, T Tsutsumimoto, S, K. Takaoka, Phosphodiesterase inhibitors, pentoxifylline and rolipram, increase bone mass mainly by promoting bone formation in normal mice, Bone. 27 (2000) 811-7.

DOI: 10.1016/s8756-3282(00)00395-1

Google Scholar

[10] MM. Vashghani Farahani, R. Masteri Farahani, MA. Abdollahifar,M. Ghatresaman, SK. Ghoreishi, B. Hajihossainlou, S. Chien, A. Mostafavinia, F. Rezaei, M. Bayat, Effects of pentoxifylline and alendronate on fracture healing in ovariectomy-induced osteoporosis in rats, Vet Res Forum. 10 (2019) 93-100;.

DOI: 10.1089/pho.2018.4438

Google Scholar

[11] MM. Vashghani Farahani, R. Masteri Farahani, A. Mostafavinia, MR. Abbasian, R. Pouriran, M. Noruzian, SK. Ghoreishi, A. Aryan, M. Bayat, Effect of pentoxifylline administration on an experimental rat model of femur fracture healing with intramedullary fixation, Iran Red Crescent Med J. 2015;.

DOI: 10.5812/ircmj.29513

Google Scholar

[12] S. Pal, K. Porwal, K Khanna, MK. Gautam, MY. Malik, M. Rashid, RJ. Macleod, M. Wahajuddin, V. Parameswaran, JR. Bellare, N. Chattopadhyay, Oral dosing of pentoxifylline, a pan-phosphodiesterase inhibitor restores bone mass and quality in osteopenic rabbits by an osteogenic mechanism: A comparative study with human parathyroid hormone, Bone. 123 (2019) 28-38;.

DOI: 10.1016/j.bone.2019.03.010

Google Scholar

[13] HY. Lin, CT. Yeh, Controlled release of pentoxifylline from porous chitosan-pectin scaffolds, Drug Deliv. 17 (2010) 313-21;.

DOI: 10.3109/10717541003713733

Google Scholar

[14] A. Slósarczyk, J. Szymura-Oleksiak, B. Mycek, The kinetics of pentoxifylline release from drug-loaded hydroxyapatite implants, Biomaterials. 21 (2000) 1215-21.

DOI: 10.1016/s0142-9612(99)00269-0

Google Scholar

[15] G. Tripathi, B. Basu, A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations. Ceramics International. 38 (2012) 341-9; doi.org/10.1016/j.ceramint.2011.07.012.

DOI: 10.1016/j.ceramint.2011.07.012

Google Scholar

[16] N. Jusoh, S. Oh, S. Kim, J. Kim, NL. Jeon, Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix, Lab Chip. 15 (2015) 3984-8;.

DOI: 10.1039/c5lc00698h

Google Scholar

[17] S. Subramaniam, YH. Fang, S. Sivasubramanian, FH. Lin, CP. Li, Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration, Biomaterials. 74 (2016) 99-108;.

DOI: 10.1016/j.biomaterials.2015.09.044

Google Scholar

[18] M. Latifi, T. Talaei-Khozani, H. Mehraban-Jahromi, M. Sani, M. Sadeghi-Atabadi, A. Fazel-Anvari, M. Kabir-Salmani, Fabrication of platelet-rich plasma heparin sulfate/hydroxyapatite/zirconia scaffold, Bioinspired, Biomimetic and Nanobiomaterials. 7 (2018) 122-130; doi.org/10.1680/jbibn.17.00038.

DOI: 10.1680/jbibn.17.00038

Google Scholar

[19] S. Shahsavari-Pour, E. Aliabadi, M. Latifi, N. Zareifard, MR. Namavar, T. Talaei-Khozani, Evaluation of the possible synergic regenerative effects of platelet-rich plasma and hydroxyapatite/zirconia in the rabbit mandible defect model, Iran J Med Sci. 43 (2018) 633–644.

DOI: 10.21203/rs.2.24621/v1

Google Scholar

[20] S. Sancilio, M. Gallorini, C. Di Nisio, E. Marsich, R. Di Pietro, H. Schweikl, A. Cataldi, Alginate/Hydroxyapatite-based nanocomposite scaffolds for bone tissue engineering improve dental pulp biomineralization and differentiation, Stem Cells International. (2018);.

DOI: 10.1155/2018/9643721

Google Scholar

[21] SM. Zhang, FZ. Cui, SS. Liao, Y. Zhu, L. Han, Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite, J Mater Sci Mater Med. 14 (2003) 641-5.

Google Scholar

[22] CY. Chen, CJ. Ke, KC. Yen, HC. Hsieh, JS. Sun, FH. Lin, 3D porous calcium-alginate scaffolds cell culture system improved human osteoblast cell clusters for cell therapy, Theranostics. 5 (2015) 643-55;.

DOI: 10.7150/thno.11372

Google Scholar

[23] HH. Tønnesen, J. Karlsen, Alginate in drug delivery systems, Drug DevInd Pharm. 28 (2002) 621-30.

Google Scholar

[24] YO. Samak, D. Santhanes, MA. El-Massik, AGA. Coombes, Formulation strategies for achieving high delivery efficiency of thymoquinone-containing Nigella sativa extract to the colon based on oral alginate microcapsules for treatment of inflammatory bowel disease, J Microencapsul. 36 (2019) 204-14;.

DOI: 10.1080/02652048.2019.1620356

Google Scholar

[25] YG. Bi, ZT. Lin, ST. Deng, Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering, Mater Sci Eng C Mater BiolAppl. 100 (2019) 576-83;.

DOI: 10.1016/j.msec.2019.03.040

Google Scholar

[26] Z. Movasaghi, S. Rehman, IU. Rehman, Raman Spectroscopy of Biological Tissues, Applied Spectroscopy Reviews. 42 (2007) 493-541; doi.org/10.1080/05704920701551530.

DOI: 10.1080/05704920701551530

Google Scholar

[27] CE. Zengin , ZA. Polat, A. Çetin, Effects of pentoxifylline on proliferation of human umbilical vein endothelial cells (HUVEC), Cumhuriyet Medical Journal. (2016);.

DOI: 10.7197/cmj.v38i3.5000196846

Google Scholar

[28] SL. Lin, RH. Chen, YM. Chen, WC. Chiang, TJ. Tsai, BS, Hsieh Pentoxifylline inhibits platelet-derived growth factor-stimulated cyclin D1 expression in mesangial cells by blocking Akt membrane translocation, Mol Pharmacol. 64 (2003) 811-22.

DOI: 10.1124/mol.64.4.811

Google Scholar

[29] F. Yang, E. Chen, Y. Yang, F. Han, S. Han, G. Wu, M. Zhang, J. Zhang, J. Han, L. Su, D. Hu, The Akt/FoxO/p27Kip1 axis contributes to the anti-proliferation of pentoxifylline in hypertrophic scars, J Cell Mol Med. (2019);.

DOI: 10.1111/jcmm.14498

Google Scholar

[30] H. Orimo, The mechanism of mineralization and the role of alkaline phosphatase in health and disease, J Nippon Med. Sch. 77 (2010) 4-12.

DOI: 10.1272/jnms.77.4

Google Scholar

[31] MM. Elseweidy, HE. Mohamed, RA. Elrashidy, HH. Atteia, GM. Elnagar, AE. Ali, Potential therapeutic roles of 10-dehydrogingerdione and/or pentoxifylline against calcium deposition in aortic tissues of high dietary cholesterol-fed rabbits, Mol Cell Biochem. 453 (2019) 131-42;.

DOI: 10.1007/s11010-018-3438-1

Google Scholar

[32] GM. Yalcin-Ülker, A. Cumbul, G. Duygu-Capar, U. Uslu, K. K. Sencift, The role of pentoxifylline on the medication-related osteonecrosis of the jaw via expression of vascular endothelial growth factor in a rat model, Oral maxillaryofacial surgery. (2017); doi.org/10.1016/j.ijom.2017.02.522.

DOI: 10.1016/j.ijom.2017.02.522

Google Scholar

[33] Y. Hasebe, LR. Thomson, CK. Dorey, Pentoxifylline inhibition of vasculogenesis in the neonatal rat retina, Invest Ophthalmol Vis Sci. 41 (2000) 2774-8.

Google Scholar

[34] C. Andrade Wde, LF. Silva, MC. Coelho, AC. Tannuri, VA. Alves, U. Tannuri, Effects of the administration of pentoxifylline and prednisolone on the evolution of portal fibrogenesis secondary to biliary obstruction in growing animals: immunohistochemical analysis of the expression of TGF-β and VEGF, Clinics (Sao Paulo). 67 (2012) 1455-61.

DOI: 10.6061/clinics/2012(12)17

Google Scholar

[35] YE. Ersoy , F.Ayan , S.Himmetoglu, Trace element levels in ischemia-reperfusion injury after left colonic anastomosis in rats and effects of papaverine and pentoxiphylline on vascular endothelial growth factor in anastomosis healing, Acta Gastroenterol Belg. 74 (2011) 22-7.

Google Scholar

[36] B. Almario, S. Wu, J. Peng, D. Alapati, S. Chen, R. SosenkoI, Pentoxifylline and prevention of hyperoxia-induced lung -injury in neonatal rats, Pediatr Res. 71 (2012) 583-9;.

DOI: 10.1038/pr.2012.14

Google Scholar

[37] AW. Shindel, G. Lin, H. Ning, L. Banie, YC. Huang, G. Liu, CS. Lin, TF. Lue, Pentoxifylline attenuates transforming growth factor-β1-stimulated collagen deposition and elastogenesis in human tunica albuginea-derived fibroblasts part 1: impact on extracellular matrix, J Sex Med . 7 (2010) 2077-85;.

DOI: 10.1111/j.1743-6109.2010.01790.x

Google Scholar

[38] N. El-Lakkany, M. Nosseir , Pharmacodynamics of pentoxifylline and/or praziquantel in murine schistosomiasis mansoni, APMIS. 115 (2007) 184-94.

DOI: 10.1111/j.1600-0463.2007.apm_501.x

Google Scholar

[39] N. El-Lakkany, SS. el-Din, F. Ebeid , The use of pentoxifylline as adjuvant therapy with praziquantel downregulates profibrogenic cytokines, collagen deposition and oxidative stress in experimental schistosomiasis mansoni, Experimental Parasitology. 129 (2011) 152-7;.

DOI: 10.1016/j.exppara.2011.06.015

Google Scholar

[40] HY. Lin, CT. Yeh, Alginate-cross linked chitosan scaffolds as pentoxifylline delivery carriers, J Mater Sci Mater Med. 21 (2010) 1611-20;.

DOI: 10.1007/s10856-010-4028-2

Google Scholar

[41] CP. Samlaska, EA. Winfield, Pentoxifylline, J Am Acad Dermatol. (1994); 30(4):603-21.

Google Scholar

[42] G. Golunski, A. Woziwodzka, J. Piosik, Potential Use of Pentoxifylline in Cancer Therapy, Curr Pharm Biotechnol. (2018);.

DOI: 10.2174/1389201019666180528084641

Google Scholar