[1]
Xue JX, Feng B, Zheng R, Lu Y, Zhou GD, Liu W, et al. Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials. 2013; 34:2624-31.
DOI: 10.1016/j.biomaterials.2012.12.011
Google Scholar
[2]
Setayeshmehr M, Esfandiari E, Rafieinia M, Hashemibeni B, Taheri-Kafrani A, Samadikuchaksaraei A, et al. Hybrid and composite scaffolds based on extracellular matrices for cartilage tissue engineering. Tissue Engineering Part B: Reviews. 2019; 25:202-24.
DOI: 10.1089/ten.teb.2018.0245
Google Scholar
[3]
Holmes B, Fang XQ, Zarate A, Keidar M, Zhang LG. Enhanced human bone marrow mesenchymal stem cell chondrogenic differentiation in electrospun constructs with carbon nanomaterials. Carbon. 2016; 97:1-13.
DOI: 10.1016/j.carbon.2014.12.035
Google Scholar
[4]
Sreerekha PR, Menon D, Nair SV, Chennazhi KP. Fabrication of fibrin based electrospun multiscale composite scaffold for tissue engineering applications. J Biomed Nanotechnol. 2013; 9:790-800.
DOI: 10.1166/jbn.2013.1585
Google Scholar
[5]
Koochekpour S, Merzak A, Pilkington GJ. Extracellular matrix proteins inhibit proliferation, upregulate migration and induce morphological changes in human glioma cell lines. Eur J Cancer. 1995; 31A:375-80.
DOI: 10.1016/0959-8049(94)00476-l
Google Scholar
[6]
Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng. 2006; 93:1152-63.
DOI: 10.1002/bit.20828
Google Scholar
[7]
DeQuach JA, Mezzano V, Miglani A, Lange S, Keller GM, Sheikh F, et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One. 2010; 5:e13039.
DOI: 10.1371/journal.pone.0013039
Google Scholar
[8]
Gong YY, Xue JX, Zhang WJ, Zhou GD, Liu W, Cao Y. A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials. 2011; 32:2265-73.
DOI: 10.1016/j.biomaterials.2010.11.078
Google Scholar
[9]
Garakani SS, Khanmohammadi M, Atoufi Z, Kamrava SK, Setayeshmehr M, Alizadeh R, et al. Fabrication of chitosan/agarose scaffolds containing extracellular matrix for tissue engineering applications. International Journal of Biological Macromolecules. 2020; 143:533-45.
DOI: 10.1016/j.ijbiomac.2019.12.040
Google Scholar
[10]
Valiani A, Samadi A, Hashemibeni B, Rafienia M. Preparation of fibrin/poly vinyl alcohol electrospun nanofibers scaffold for tissue engineering applications. Journal of Isfahan Medical School. 2016; 34:737-44.
Google Scholar
[11]
Garrigues NW, Little D, Sanchez-Adams J, Ruch DS, Guilak F. Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering. J Biomed Mater Res A. 2014; 102:3998-4008.
DOI: 10.1002/jbm.a.35068
Google Scholar
[12]
He X, Feng B, Huang C, Wang H, Ge Y, Hu R, et al. Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering. International journal of nanomedicine. 2015; 10:(2089).
DOI: 10.2147/ijn.s79461
Google Scholar
[13]
Sayyar S, Murray E, Thompson BC, Gambhir S, Officer DL, Wallace GG. Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon. 2013; 52:296-304.
DOI: 10.1016/j.carbon.2012.09.031
Google Scholar
[14]
Setayeshmehr M, Esfandiari E, Rafienia M, Hashemibeni B, Taheri-Kafrani A, Samadikuchaksaraei A, et al. Hybrid and composite scaffolds based on extracellular matrices for cartilage tissue engineering. Tissue Engineering. (2018).
DOI: 10.1089/ten.teb.2018.0245
Google Scholar
[15]
Gorji M, Ghasemi N, Setayeshmehr M, Zargar A, Kazemi M, Soleimani M, et al. The effects of fibrin–icariin nanoparticle loaded in poly (lactic-co-glycolic) acid scaffold as a localized delivery system on chondrogenesis of human adipose-derived stem cells. Advanced Biomedical Research. 2020; 9.
DOI: 10.4103/abr.abr_143_19
Google Scholar
[16]
Eyrich D, Brandl F, Appel B, Wiese H, Maier G, Wenzel M, et al. Long-term stable fibrin gels for cartilage engineering. Biomaterials. 2007; 28:55-65.
DOI: 10.1016/j.biomaterials.2006.08.027
Google Scholar
[17]
He X, Feng B, Huang C, Wang H, Ge Y, Hu R, et al. Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering. Int J Nanomedicine. 2015; 10:2089-99.
DOI: 10.2147/ijn.s79461
Google Scholar
[18]
Hashemibeni B, Goharian V, Esfandiari E, Sadeghi F, Fasihi F, Alipur R, et al. An animal model study for repair of tracheal defects with autologous stem cells and differentiated chondrocytes from adipose-derived stem cells. Journal of pediatric surgery. 2012; 47:1997-2003.
DOI: 10.1016/j.jpedsurg.2012.06.030
Google Scholar
[19]
Hashemibeni B, Sadeghi F, Bahrambeigi V, Sanaei M, Sharifi E, Valiani A, et al. Determination and comparison rate of expression markers of osteoblast derived of Adipose derived stem cells markers in monolayer and pellet culture models. International Journal of Engineering Research and Development. 2015; 11.
Google Scholar
[20]
Esfandiary E, Valiani A, Hashemibeni B, Moradi I, Narimani M. The evaluation of toxicity of carbon nanotubes on the human adipose-derived-stem cells in-vitro. Adv Biomed Res. 2014; 3:40.
Google Scholar
[21]
Chang CH, Chen CC, Liao CH, Lin FH, Hsu YM, Fang HW. Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium‐derived mesenchymal stem cells. Journal of biomedical materials research Part A. 2014; 102:2248-57.
DOI: 10.1002/jbm.a.34897
Google Scholar
[22]
Ghosouri S., Setayeshmehr M., Taheri-Kafrani A., Dehghani P., Valiani A. Characterization of Poly(ε-Caprolactone)/Extracellular Matrix Nanofibers Composite Scaffold for Tissue Engineering. Journal of Isfahan Medical School. 2019; 37:296-302.
Google Scholar
[23]
Cheng N-C, Estes BT, Young T-H, Guilak F. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue engineering Part A. 2012; 19:484-96.
DOI: 10.1089/ten.tea.2012.0384
Google Scholar
[24]
Yang SH, Wu CC, Shih TT, Chen PQ, Lin FH. Three-dimensional culture of human nucleus pulposus cells in fibrin clot: comparisons on cellular proliferation and matrix synthesis with cells in alginate. Artif Organs. 2008; 32:70-3.
DOI: 10.1111/j.1525-1594.2007.00458.x
Google Scholar
[25]
Setayeshmehr M, Esfandiari E, Hashemibeni B, Tavakoli AH, Rafienia M, Samadikuchaksaraei A, et al. Chondrogenesis of human adipose-derived mesenchymal stromal cells on the [devitalized costal cartilage matrix/poly (vinyl alcohol)/fibrin] hybrid scaffolds. European Polymer Journal. 2019; 118:528-41.
DOI: 10.1016/j.eurpolymj.2019.04.044
Google Scholar
[26]
Accardi MA, McCullen SD, Callanan A, Chung S, Cann PM, Stevens MM, et al. Effects of fiber orientation on the frictional properties and damage of regenerative articular cartilage surfaces. Tissue Eng Part A. 2013; 19:2300-10.
DOI: 10.1089/ten.tea.2012.0580
Google Scholar
[27]
Croisier F, Duwez AS, Jerome C, Leonard AF, van der Werf KO, Dijkstra PJ, et al. Mechanical testing of electrospun PCL fibers. Acta Biomater. 2012; 8:218-24.
DOI: 10.1016/j.actbio.2011.08.015
Google Scholar
[28]
Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials. 2009; 30:4996-5003.
DOI: 10.1016/j.biomaterials.2009.05.057
Google Scholar
[29]
Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials. 2007; 28:316-25.
DOI: 10.1016/j.biomaterials.2006.08.042
Google Scholar
[30]
Xiao T, Guo W, Chen M, Hao C, Gao S, Huang J, et al. Fabrication and in vitro study of tissue-engineered cartilage scaffold derived from Wharton's jelly extracellular matrix. BioMed research international. 2017; (2017).
DOI: 10.1155/2017/5839071
Google Scholar
[31]
Gilbert TW, Stewart-Akers AM, Badylak SF. A quantitative method for evaluating the degradation of biologic scaffold materials. Biomaterials. 2007; 28:147-50.
DOI: 10.1016/j.biomaterials.2006.08.022
Google Scholar
[32]
Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials. 2004; 25:5735-42.
DOI: 10.1016/j.biomaterials.2004.01.066
Google Scholar
[33]
Sutherland AJ, Beck EC, Dennis SC, Converse GL, Hopkins RA, Berkland CJ, et al. Decellularized Cartilage May Be a Chondroinductive Material for Osteochondral Tissue Engineering. Plos One. 2015; 10:e0121966.
DOI: 10.1371/journal.pone.0121966
Google Scholar