The Effectiveness Obstructive Sleep Apnea Monitoring Using Telemedicine Smartphone System (TmSS)

Article Preview

Abstract:

Data at the world health organization shows that around more than 100 million people worldwide suffer from Obstructive Sleep Apnea (OSA) and most sufferers go undetected. The purpose of this study is to develop an apnea monitor that can detect the symptoms of Obstructive Sleep Apnea using the Telemedicine Smartphone System (TmSS). The contribution of this study is the generation of telemedicine systems in sleep apnea monitoring devices. So that the monitoring tools can be effective and efficient when used, then the Obstructive Sleep Apnea monitoring tool is made with the TmSS system that can transmit data values wirelessly and in real-time. This tool uses a flex sensor to detect patient breathing. The output generated by the sensor is then conditioned on an analog signal conditioner (PSA) circuit. The signal output from the PSA is processed on the ATMega 328 microcontroller to get the respiration value which is then sent via Bluetooth HC-05 and displayed on an android smartphone device which will also display a warning notification in the event of stopping breathing (apnea). Based on the results of the measurement of respiration values compared with standard equipment produces the highest error value of 6.98% and the lowest of 0.00%. The tool can send data respiration values using the TmSS system properly. This tool can be implemented to detect the symptoms of Obstructive Sleep Apnea.

You might also be interested in these eBooks

Info:

Pages:

113-121

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. J. Fernandez, Sistem Pernafasan,, Histol. Dasar, no. 1102005203, p.335–355, (2017).

Google Scholar

[2] C. C. Consequences, Sleep Apnea,, vol. 69, no. 7, 2017,.

Google Scholar

[3] N. Bolden, Obstructive Sleep Apnea (OSA),, Anesth. Oral Board Rev. Knocking Out Boards, p.63–64, 2009,.

DOI: 10.1017/cbo9780511657559.026

Google Scholar

[4] S. A. Lerner and W. T. Cecil, Obstructive sleep apnea.,, Kans. Med., vol. 86, no. 5, p.152–154, 162, (1985).

Google Scholar

[5] M. Mukhlis and A. Bakhtiar, Obstructive Sleep Apneu (OSA), Obesitas Hypoventilation Syndrome (OHS) dan Gagal Napas,, J. Respirasi, vol. 1, no. 3, p.94, 2019,.

DOI: 10.20473/jr.v1-i.3.2015.94-102

Google Scholar

[6] R. Jayaraj, M. Jagannath, and A. Kanagasabai, A review on detection and treatment methods of sleep apnea,, J. Clin. Diagnostic Res., vol. 11, no. 3, pp. VE01–VE03, 2017,.

Google Scholar

[7] V. K. Kapur et al., Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea,, J. Clin. Sleep Med., vol. 1313, no. 3, p.479–504, 2017,.

DOI: 10.5664/jcsm.6506

Google Scholar

[8] Voscopoulos, Non-Invasive Respiratory Volume Monitoring to Detect Apnea in Post-Operative Patients: Case Series,, J. Clin. Med. Res., vol. M, 2014,.

DOI: 10.14740/jocmr1718w

Google Scholar

[9] S. K. Kundu, S. Kumagai, and M. Sasaki, A wearable capacitive sensor for monitoring human respiratory rate,, Jpn. J. Appl. Phys., vol. 52, no. 4 PART 2, 2013,.

DOI: 10.7567/jjap.52.04cl05

Google Scholar

[10] S. Solasubbu, A. Hemalatha, M. Srimathi, and A. Professor, Wireless Oral Feeding Monitor for Premature Infants with Flex Sensor for Respiration,, IJSRD-International J. Sci. Res. Dev., vol. 3, no. 01, p.2321–0613, (2015).

Google Scholar

[11] F. Mendonça, S. S. Mostafa, A. G. Ravelo-García, F. Morgado-Dias, and T. Penzel, A Review of Obstructive Sleep Apnea Detection Approaches,, IEEE J. Biomed. Heal. Informatics, vol. 23, no. 2, p.825–837, 2019,.

DOI: 10.1109/jbhi.2018.2823265

Google Scholar

[12] A. H. Yüzer, H. Sümbül, and K. Polat, A Novel Wearable Real-Time Sleep Apnea Detection System Based on the Acceleration Sensor,, Irbm, vol. 41, no. 1, p.39–47, 2020,.

DOI: 10.1016/j.irbm.2019.10.007

Google Scholar

[13] N. A. Anidityas, N. R. Utami, P. Widiyaningrum, and I. Artikel, Penggunaan Alat Peraga Sistem Pernapasan Manusia Pada Kualitas Belajar Siswa Smp Kelas Viii,, USEJ - Unnes Sci. Educ. J., vol. 1, no. 2, 2012,.

DOI: 10.22373/pbio.v9i2.11685

Google Scholar

[14] N. Maske and A. Gaikwad, MONITORING OF OBSTRUCTIVE SLEEP APNEA USING MOBILE,, Int. J. Ind. Electron. Electr. Eng. ISSN, vol. 4, no. 4, p.71–75, (2016).

Google Scholar

[15] N. Dhumal and R. Gangakhedkar, Thermistor based Apnoea Monitor,, p.2781–2784, (2016).

Google Scholar

[16] R. Bs, Non-invasive sleep apnea detection and monitoring system,, p.1196–1202, (2016).

Google Scholar

[17] K. Sneha, Detection of Sleep Apnea using Pressure Sensor,, Int. Res. J. Eng. Technol., p.709–712, (2016).

Google Scholar

[18] A. Aminifar, F. Rinc, S. Murali, and D. Atienza, Online Obstructive Sleep Apnea Detection on,, p.1–12, (2018).

Google Scholar

[19] D. Pandya, J. Parmar, and A. Patel, PIC Microcontroller based baby incubator using sensors,, Int. Res. J. Eng. Technol., vol. 4, no. 3, p.1906–1910, (2017).

Google Scholar