[1]
M. Bahraminasab, M.R. Hassan, and B.B. Sahari, Metallic biomaterials of knee and hip - A review. Trends Biomater Artif Organs. 24 (2010) 69-82.
Google Scholar
[2]
M. Bahraminasab and K.L. Edwards, Biocomposites for Hard Tissue Replacement and Repair, in: B.P. Sidhu S., Zitoune R., Yazdani M. (Eds), Futuristic Composites. Materials Horizons: From Nature to Nanomaterials, Springer, Singapore, 2018, pp.281-296.
DOI: 10.1007/978-981-13-2417-8_14
Google Scholar
[3]
M. Bahraminasab and F. Farahmand, State of the art review on design and manufacture of hybrid biomedical materials: Hip and knee prostheses. Proc. Inst. Mech. Eng. [H] J. Eng. Med. (2017) 1-29.
DOI: 10.1177/0954411917705911
Google Scholar
[4]
J. Liu, et al., 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Mater. Des. 171 (2019) 1-9.
DOI: 10.1016/j.matdes.2019.107708
Google Scholar
[5]
F. Baino, Chapter 16 - Functionally Graded Bioactive Glass-Derived Scaffolds Mimicking Bone Tissue, in: G. Kaur (Eds), Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses Woodhead Publishing, 2019, pp.443-466.
DOI: 10.1016/b978-0-08-102196-5.00016-1
Google Scholar
[6]
J. Pavón, et al., Development of new titanium implants with longitudinal gradient porosity by space-holder technique. J Mater Sci. 50 (2015) 6103-6112.
DOI: 10.1007/s10853-015-9163-1
Google Scholar
[7]
D. Mahmoud and M.A. Elbestawi, Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review. J. Manuf. Mater. Process. 1 (2017) 1-19.
DOI: 10.3390/jmmp1020013
Google Scholar
[8]
M.R. Ayatollahi, et al., To Improve Total Knee Prostheses Performance Using Three-phase Ceramic-based Functionally Graded Biomaterials. Front. Mater. Sci. 6 (2019) 1-9.
DOI: 10.3389/fmats.2019.00107
Google Scholar
[9]
A. Sola, D. Bellucci, and V. Cannillo, Functionally graded materials for orthopedic applications–an update on design and manufacturing. Biotechnol. Adv. 34 (2016) 504-531.
DOI: 10.1016/j.biotechadv.2015.12.013
Google Scholar
[10]
A. Oshkour, et al., Mechanical and physical behaviour of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite. J Mech Behav Biomed Mater. 49 (2015) 321-331.
DOI: 10.1016/j.jmbbm.2015.05.020
Google Scholar
[11]
A.A. Oshkour, et al., Effect of Geometrical Parameters on the Performance of Longitudinal Functionally Graded Femoral Prostheses. Artif. Organs. 39 (2015) 156-164.
DOI: 10.1111/aor.12315
Google Scholar
[12]
G.M. Kumar. Functionally graded bio-ceramic reinforced PVA hydrogel composites for knee joint artificial cartilages. in AIP Conference Proceedings. 2018. AIP Publishing.
DOI: 10.1063/1.5029689
Google Scholar
[13]
T. Kawai, et al., Customized, degradable, functionally graded scaffold for potential treatment of early stage osteonecrosis of the femoral head. J. Orthop. Res. 36 (2018) 1002-1011.
DOI: 10.1002/jor.23673
Google Scholar
[14]
M. Monzón, et al., Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds. BDM. 1 (2018) 69-75.
DOI: 10.1007/s42242-018-0003-4
Google Scholar
[15]
M. Bahraminasab, et al., Material tailoring of the femoral component in a total knee replacement to reduce the problem of aseptic loosening. Mater. Des. 52 (2013) 441-451.
DOI: 10.1016/j.matdes.2013.05.066
Google Scholar
[16]
M. Bahraminasab, et al., Multi-objective design optimization of functionally graded material for the femoral component of a total knee replacement. Mater. Des. 53 (2014) 159-173.
DOI: 10.1016/j.matdes.2013.06.050
Google Scholar
[17]
M. Bahraminasab, et al., On the influence of shape and material used for the femoral component pegs in knee prostheses for reducing the problem of aseptic loosening. Mater. Des. 55 (2014) 416-428.
DOI: 10.1016/j.matdes.2013.10.020
Google Scholar
[18]
A.A. Atiyah, S.B. Farid, and D.N. Abdulamer, Fabrication of Ceramic-Metal Functionally Graded Materials. J. Eng. Technol. 31 (2013) 513-524.
Google Scholar
[19]
M. Bahraminasab, S. Ghaffari, and H. Eslami-Shahed, Al2O3-Ti functionally graded material prepared by spark plasma sintering for orthopaedic applications. J Mech Behav Biomed Mater. 72 (2017) 82-89.
DOI: 10.1016/j.jmbbm.2017.04.024
Google Scholar
[20]
Y. Zhang and A. Bandyopadhyay, Direct fabrication of compositionally graded Ti-Al2O3 multi-material structures using Laser Engineered Net Shaping. Addit. manuf. 21 (2018) 104-111.
DOI: 10.1016/j.addma.2018.03.001
Google Scholar
[21]
T. Fujii, et al., Fracture toughness distribution of alumina-titanium functionally graded materials fabricated by spark plasma sintering. J Alloys Compd. 766 (2018) 1-11.
DOI: 10.1016/j.jallcom.2018.06.304
Google Scholar
[22]
C. Madec, et al., Alumina-titanium functionally graded composites produced by spark plasma sintering. J. Mater. Process. Technol. 254 (2018) 277-282.
DOI: 10.1016/j.jmatprotec.2017.11.004
Google Scholar
[23]
C.F. Gutierrez-Gonzalez, et al., Processing, spark plasma sintering, and mechanical behavior of alumina/titanium composites. J Mater Sci. 49 (2014 ) 3823-3830.
DOI: 10.1007/s10853-014-8095-5
Google Scholar
[24]
S. Hayun, et al., Phase Constitution and Dynamic Properties of Spark Plasma‐Sintered Alumina–Titanium Composites. J. Am. Ceram. Soc. 99 (2015) 573-580.
DOI: 10.1111/jace.13992
Google Scholar
[25]
S. Meir, et al., Mechanical properties of Al 2 O 3\ Ti composites fabricated by spark plasma sintering. Ceram Int. 41 (2015 ) 4637-4643.
DOI: 10.1016/j.ceramint.2014.12.008
Google Scholar
[26]
T. Fujii, et al., Fabrication of alumina-titanium composites by spark plasma sintering and their mechanical properties. J Alloys Compd. 744 (2018 ) 759-768.
DOI: 10.1016/j.jallcom.2018.02.142
Google Scholar
[27]
M. Bahraminasab, et al., Corrosion of Al2O3-Ti composites under inflammatory condition in simulated physiological solution. Mater Sci Eng C Mater Biol Appl. 102 (2019 ) 200-211.
DOI: 10.1016/j.msec.2019.04.047
Google Scholar
[28]
M. Bahraminasab, et al., Electrochemical corrosion of Ti-Al2O3 biocomposites in Ringer's solution. J Alloys Compd. 777 (2019 ) 34-43.
DOI: 10.1016/j.jallcom.2018.09.313
Google Scholar
[29]
M. Bahraminasab, et al., In vivo performance of Al 2 O 3-Ti bone implants in the rat femur. J. Orthop. Surg. Res. 16 (2021) 1-14.
Google Scholar
[30]
T. Fujii, et al., Fabrication and strength evaluation of biocompatible ceramic-metal composite materials. J. Solid Mech. Mater. Eng. 4 (2010) 1699-1710.
Google Scholar
[31]
T. Fujii, et al., Fabrication of a PSZ-Ti functionally graded material by spark plasma sintering and its fracture toughness. Mat. Sci Eng., A. 682 (2017) 656-663.
DOI: 10.1016/j.msea.2016.11.091
Google Scholar
[32]
E. Fernandez-Garcia, et al., Osteoblastic cell response to spark plasma-sintered zirconia/titanium cermets. J Biomater Appl. 29 (2014) 813-823.
DOI: 10.1177/0885328214547400
Google Scholar
[33]
R. Guzman, et al., Biocompatibility assessment of spark plasma-sintered alumina-titanium cermets. J Biomater Appl. 30 (2016) 759-769.
DOI: 10.1177/0885328215584858
Google Scholar
[34]
B.-D. Hahn, et al., Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 5 (2009) 3205-3214.
DOI: 10.1016/j.actbio.2009.05.005
Google Scholar
[35]
R.E. McMahon, et al., A comparative study of the cytotoxicity and corrosion resistance of nickel–titanium and titanium–niobium shape memory alloys. Acta Biomater. 8 (2012) 2863-2870.
DOI: 10.1016/j.actbio.2012.03.034
Google Scholar
[36]
M. Li, et al., Cytotoxic Effect on Osteosarcoma MG-63 Cells by Degradation of Magnesium. J. Mater. Sci. Technol. 30 (2014) 888-893.
Google Scholar
[37]
A. Benko, et al., Titanium Surface Modification with Carbon Nanotubes. Towards Improved Biocompatibility. Acta Phys. Pol. 129 (2016) 176-178.
DOI: 10.12693/aphyspola.129.176
Google Scholar
[38]
L. Braz, et al., Chitosan/sulfated locust bean gum nanoparticles: In vitro and in vivo evaluation towards an application in oral immunization. Int. J. Biol. Macromol. 96 (2017) 786-797.
DOI: 10.1016/j.ijbiomac.2016.12.076
Google Scholar
[39]
S. Spriano, et al., How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials? Mater Sci Eng C Mater Biol Appl. 74 (2017) 542-555.
DOI: 10.1016/j.msec.2016.12.107
Google Scholar
[40]
S. Chen, et al., Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloids Surf B Biointerfaces. 164 (2018) 58-69.
DOI: 10.1016/j.colsurfb.2018.01.022
Google Scholar
[41]
K. Rabel, et al., Controlling osteoblast morphology and proliferation via surface micro-topographies of implant biomaterials. Sci Rep. 10 (2020) 1-14.
DOI: 10.1038/s41598-020-69685-6
Google Scholar
[42]
H.-C. Ko, et al., Initial osteoblast-like cell response to pure titanium and zirconia/alumina ceramics. Dent. Mater. 23 (2007) 1349-1355.
DOI: 10.1016/j.dental.2006.11.023
Google Scholar
[43]
E. Saberi, et al., Proliferation, odontogenic/osteogenic differentiation, and cytokine production by human stem cells of the apical papilla induced by biomaterials: A comparative study. Clin. Cosmet. Investig. Dent. 11 (2019) 181-193.
DOI: 10.2147/ccide.s211893
Google Scholar
[44]
K. Anselme, Osteoblast adhesion on biomaterials. Biomaterials. 21 (2000) 667-681.
DOI: 10.1016/s0142-9612(99)00242-2
Google Scholar
[45]
Q. Huang, et al., Enhanced SaOS-2 cell adhesion, proliferation and differentiation on Mg-incorporated micro/nano-topographical TiO2 coatings. Appl. Surf. Sci. 447 (2018) 767-776.
DOI: 10.1016/j.apsusc.2018.04.095
Google Scholar
[46]
F. Robotti, et al., A micron-scale surface topography design reducing cell adhesion to implanted materials. Sci Rep. 8 (2018) 1-13.
DOI: 10.1038/s41598-018-29167-2
Google Scholar
[47]
K. Oya, et al., Calcification by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG. Biomaterials. 30 (2009) 1281-1286.
DOI: 10.1016/j.biomaterials.2008.11.030
Google Scholar
[48]
D.-H. Lee, et al., MC3T3-E1 cell response to pure titanium, zirconia and nano-hydroxyapatite. Int. J. Mod. Phys. B. 23 (2009) 1535-1540.
DOI: 10.1142/s0217979209061226
Google Scholar
[49]
F. He, et al., Enhanced initial proliferation and differentiation of MC3T3-E1 cells on HF/HNO3 solution treated nanostructural titanium surface. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 110 (2010) 13-22.
DOI: 10.1016/j.tripleo.2010.03.044
Google Scholar
[50]
B. Zhang, et al., Surface characterization and cell response of binary Ti-Ag alloys with CP Ti as material control. J. Mater. Sci. Technol. 28 (2012) 779-784.
DOI: 10.1016/s1005-0302(12)60130-3
Google Scholar
[51]
J.-J. Lee, et al., Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity. J Adv Prosthodont. 7 (2015) 172-177.
DOI: 10.4047/jap.2015.7.2.172
Google Scholar
[52]
S. Höhn and S. Virtanen, Effect of inflammatory conditions and H2O2 on bare and coated Ti–6Al–4V surfaces: Corrosion behavior, metal ion release and Ca-P formation under long-term immersion in DMEM. Appl. Surf. Sci. 357 (2015) 101-111.
DOI: 10.1016/j.apsusc.2015.08.261
Google Scholar
[53]
R. Forrer, K. Gautschi, and H. Lutz, Simultaneous measurement of the trace elements Al, As, B, Be, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr, and Zn in human serum and their reference ranges by ICP-MS. Biol. Trace Elem. Res. 80 (2001) 77-93.
DOI: 10.1385/bter:80:1:77
Google Scholar
[54]
N.J. Hallab, et al., Orthopaedic implant related metal toxicity in terms of human lymphocyte reactivity to metal-protein complexes produced from cobalt-base and titanium-base implant alloy degradation. Mol. Cell. Biochem. 222 (2001) 127-136.
DOI: 10.1007/978-1-4615-0793-2_15
Google Scholar
[55]
A. Sargeant and T. Goswami, Hip implants - Paper VI - Ion concentrations. Mater. Des. 28 (2007) 155-171.
DOI: 10.1016/j.matdes.2005.05.018
Google Scholar
[56]
L. Balcaen, et al., Accurate determination of ultra-trace levels of Ti in blood serum using ICP-MS/MS. Anal. Chim. Acta. 809 (2014) 1-8.
DOI: 10.1016/j.aca.2013.10.017
Google Scholar
[57]
L. Rodella, et al., Aluminium exposure induces Alzheimer s disease-like histopathological alterations in mouse brain. Histol. Histopathol. 23 (2008) 433-439.
Google Scholar
[58]
C. Exley, The toxicity of aluminium in humans. Morphologie. 100 (2016) 51-55.
Google Scholar
[59]
S. Yoganathan, et al., Prevalence and predictors of peripheral neuropathy in nondiabetic children with chronic kidney disease. Muscle Nerve. 57 (2018) 792-798.
DOI: 10.1002/mus.26027
Google Scholar
[60]
J. Michl, K.C. Park, and P. Swietach, Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Commun. Biol. 2 (2019) 1-12.
DOI: 10.1038/s42003-019-0393-7
Google Scholar