Cytotoxicity and Ion Release of Functionally Graded Al2O3- Ti Orthopedic Biomaterial

Article Preview

Abstract:

The aim of this study was to evaluate the biocompatibility of Al2O3-Ti functionally graded material (FGM) successfully fabricated by Spark Plasma Sintering (SPS) technology, and to compare with pure Ti and alumina. Pre-osteoblast MC3T3-E1 cells were used to examine cell viability, proliferation and differentiation using lactate dehydrogenase (LDH) cytotoxicity detection kit, MTT assay and Alkaline Phosphatase (ALP) colorimetric test at different time points. Furthermore, ion release from the materials into the culture medium was assessed. The results showed cell viability over 80% for FGM and alumina which dismissed any cytotoxicity risk due to materials or manufacturing. The results of MTT tests identified superiority of FGM than Ti and alumina, particularly in late proliferation. Nevertheless, in cell differentiation, all materials performed similarly with no statistical differences. Furthermore, it was indicated that Ti had no ion release, while alumina had small amount of Al ion dissolution. FGM, however, had more ions detachment, particularly Al ions.

You might also be interested in these eBooks

Info:

Pages:

103-118

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bahraminasab, M.R. Hassan, and B.B. Sahari, Metallic biomaterials of knee and hip - A review. Trends Biomater Artif Organs. 24 (2010) 69-82.

Google Scholar

[2] M. Bahraminasab and K.L. Edwards, Biocomposites for Hard Tissue Replacement and Repair, in: B.P. Sidhu S., Zitoune R., Yazdani M. (Eds), Futuristic Composites. Materials Horizons: From Nature to Nanomaterials, Springer, Singapore, 2018, pp.281-296.

DOI: 10.1007/978-981-13-2417-8_14

Google Scholar

[3] M. Bahraminasab and F. Farahmand, State of the art review on design and manufacture of hybrid biomedical materials: Hip and knee prostheses. Proc. Inst. Mech. Eng. [H] J. Eng. Med. (2017) 1-29.

DOI: 10.1177/0954411917705911

Google Scholar

[4] J. Liu, et al., 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Mater. Des. 171 (2019) 1-9.

DOI: 10.1016/j.matdes.2019.107708

Google Scholar

[5] F. Baino, Chapter 16 - Functionally Graded Bioactive Glass-Derived Scaffolds Mimicking Bone Tissue, in: G. Kaur (Eds), Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses Woodhead Publishing, 2019, pp.443-466.

DOI: 10.1016/b978-0-08-102196-5.00016-1

Google Scholar

[6] J. Pavón, et al., Development of new titanium implants with longitudinal gradient porosity by space-holder technique. J Mater Sci. 50 (2015) 6103-6112.

DOI: 10.1007/s10853-015-9163-1

Google Scholar

[7] D. Mahmoud and M.A. Elbestawi, Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review. J. Manuf. Mater. Process. 1 (2017) 1-19.

DOI: 10.3390/jmmp1020013

Google Scholar

[8] M.R. Ayatollahi, et al., To Improve Total Knee Prostheses Performance Using Three-phase Ceramic-based Functionally Graded Biomaterials. Front. Mater. Sci. 6 (2019) 1-9.

DOI: 10.3389/fmats.2019.00107

Google Scholar

[9] A. Sola, D. Bellucci, and V. Cannillo, Functionally graded materials for orthopedic applications–an update on design and manufacturing. Biotechnol. Adv. 34 (2016) 504-531.

DOI: 10.1016/j.biotechadv.2015.12.013

Google Scholar

[10] A. Oshkour, et al., Mechanical and physical behaviour of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite. J Mech Behav Biomed Mater. 49 (2015) 321-331.

DOI: 10.1016/j.jmbbm.2015.05.020

Google Scholar

[11] A.A. Oshkour, et al., Effect of Geometrical Parameters on the Performance of Longitudinal Functionally Graded Femoral Prostheses. Artif. Organs. 39 (2015) 156-164.

DOI: 10.1111/aor.12315

Google Scholar

[12] G.M. Kumar. Functionally graded bio-ceramic reinforced PVA hydrogel composites for knee joint artificial cartilages. in AIP Conference Proceedings. 2018. AIP Publishing.

DOI: 10.1063/1.5029689

Google Scholar

[13] T. Kawai, et al., Customized, degradable, functionally graded scaffold for potential treatment of early stage osteonecrosis of the femoral head. J. Orthop. Res. 36 (2018) 1002-1011.

DOI: 10.1002/jor.23673

Google Scholar

[14] M. Monzón, et al., Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds. BDM. 1 (2018) 69-75.

DOI: 10.1007/s42242-018-0003-4

Google Scholar

[15] M. Bahraminasab, et al., Material tailoring of the femoral component in a total knee replacement to reduce the problem of aseptic loosening. Mater. Des. 52 (2013) 441-451.

DOI: 10.1016/j.matdes.2013.05.066

Google Scholar

[16] M. Bahraminasab, et al., Multi-objective design optimization of functionally graded material for the femoral component of a total knee replacement. Mater. Des. 53 (2014) 159-173.

DOI: 10.1016/j.matdes.2013.06.050

Google Scholar

[17] M. Bahraminasab, et al., On the influence of shape and material used for the femoral component pegs in knee prostheses for reducing the problem of aseptic loosening. Mater. Des. 55 (2014) 416-428.

DOI: 10.1016/j.matdes.2013.10.020

Google Scholar

[18] A.A. Atiyah, S.B. Farid, and D.N. Abdulamer, Fabrication of Ceramic-Metal Functionally Graded Materials. J. Eng. Technol. 31 (2013) 513-524.

Google Scholar

[19] M. Bahraminasab, S. Ghaffari, and H. Eslami-Shahed, Al2O3-Ti functionally graded material prepared by spark plasma sintering for orthopaedic applications. J Mech Behav Biomed Mater. 72 (2017) 82-89.

DOI: 10.1016/j.jmbbm.2017.04.024

Google Scholar

[20] Y. Zhang and A. Bandyopadhyay, Direct fabrication of compositionally graded Ti-Al2O3 multi-material structures using Laser Engineered Net Shaping. Addit. manuf. 21 (2018) 104-111.

DOI: 10.1016/j.addma.2018.03.001

Google Scholar

[21] T. Fujii, et al., Fracture toughness distribution of alumina-titanium functionally graded materials fabricated by spark plasma sintering. J Alloys Compd. 766 (2018) 1-11.

DOI: 10.1016/j.jallcom.2018.06.304

Google Scholar

[22] C. Madec, et al., Alumina-titanium functionally graded composites produced by spark plasma sintering. J. Mater. Process. Technol. 254 (2018) 277-282.

DOI: 10.1016/j.jmatprotec.2017.11.004

Google Scholar

[23] C.F. Gutierrez-Gonzalez, et al., Processing, spark plasma sintering, and mechanical behavior of alumina/titanium composites. J Mater Sci. 49 (2014 ) 3823-3830.

DOI: 10.1007/s10853-014-8095-5

Google Scholar

[24] S. Hayun, et al., Phase Constitution and Dynamic Properties of Spark Plasma‐Sintered Alumina–Titanium Composites. J. Am. Ceram. Soc. 99 (2015) 573-580.

DOI: 10.1111/jace.13992

Google Scholar

[25] S. Meir, et al., Mechanical properties of Al 2 O 3\ Ti composites fabricated by spark plasma sintering. Ceram Int. 41 (2015 ) 4637-4643.

DOI: 10.1016/j.ceramint.2014.12.008

Google Scholar

[26] T. Fujii, et al., Fabrication of alumina-titanium composites by spark plasma sintering and their mechanical properties. J Alloys Compd. 744 (2018 ) 759-768.

DOI: 10.1016/j.jallcom.2018.02.142

Google Scholar

[27] M. Bahraminasab, et al., Corrosion of Al2O3-Ti composites under inflammatory condition in simulated physiological solution. Mater Sci Eng C Mater Biol Appl. 102 (2019 ) 200-211.

DOI: 10.1016/j.msec.2019.04.047

Google Scholar

[28] M. Bahraminasab, et al., Electrochemical corrosion of Ti-Al2O3 biocomposites in Ringer's solution. J Alloys Compd. 777 (2019 ) 34-43.

DOI: 10.1016/j.jallcom.2018.09.313

Google Scholar

[29] M. Bahraminasab, et al., In vivo performance of Al 2 O 3-Ti bone implants in the rat femur. J. Orthop. Surg. Res. 16 (2021) 1-14.

Google Scholar

[30] T. Fujii, et al., Fabrication and strength evaluation of biocompatible ceramic-metal composite materials. J. Solid Mech. Mater. Eng. 4 (2010) 1699-1710.

Google Scholar

[31] T. Fujii, et al., Fabrication of a PSZ-Ti functionally graded material by spark plasma sintering and its fracture toughness. Mat. Sci Eng., A. 682 (2017) 656-663.

DOI: 10.1016/j.msea.2016.11.091

Google Scholar

[32] E. Fernandez-Garcia, et al., Osteoblastic cell response to spark plasma-sintered zirconia/titanium cermets. J Biomater Appl. 29 (2014) 813-823.

DOI: 10.1177/0885328214547400

Google Scholar

[33] R. Guzman, et al., Biocompatibility assessment of spark plasma-sintered alumina-titanium cermets. J Biomater Appl. 30 (2016) 759-769.

DOI: 10.1177/0885328215584858

Google Scholar

[34] B.-D. Hahn, et al., Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 5 (2009) 3205-3214.

DOI: 10.1016/j.actbio.2009.05.005

Google Scholar

[35] R.E. McMahon, et al., A comparative study of the cytotoxicity and corrosion resistance of nickel–titanium and titanium–niobium shape memory alloys. Acta Biomater. 8 (2012) 2863-2870.

DOI: 10.1016/j.actbio.2012.03.034

Google Scholar

[36] M. Li, et al., Cytotoxic Effect on Osteosarcoma MG-63 Cells by Degradation of Magnesium. J. Mater. Sci. Technol. 30 (2014) 888-893.

Google Scholar

[37] A. Benko, et al., Titanium Surface Modification with Carbon Nanotubes. Towards Improved Biocompatibility. Acta Phys. Pol. 129 (2016) 176-178.

DOI: 10.12693/aphyspola.129.176

Google Scholar

[38] L. Braz, et al., Chitosan/sulfated locust bean gum nanoparticles: In vitro and in vivo evaluation towards an application in oral immunization. Int. J. Biol. Macromol. 96 (2017) 786-797.

DOI: 10.1016/j.ijbiomac.2016.12.076

Google Scholar

[39] S. Spriano, et al., How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials? Mater Sci Eng C Mater Biol Appl. 74 (2017) 542-555.

DOI: 10.1016/j.msec.2016.12.107

Google Scholar

[40] S. Chen, et al., Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloids Surf B Biointerfaces. 164 (2018) 58-69.

DOI: 10.1016/j.colsurfb.2018.01.022

Google Scholar

[41] K. Rabel, et al., Controlling osteoblast morphology and proliferation via surface micro-topographies of implant biomaterials. Sci Rep. 10 (2020) 1-14.

DOI: 10.1038/s41598-020-69685-6

Google Scholar

[42] H.-C. Ko, et al., Initial osteoblast-like cell response to pure titanium and zirconia/alumina ceramics. Dent. Mater. 23 (2007) 1349-1355.

DOI: 10.1016/j.dental.2006.11.023

Google Scholar

[43] E. Saberi, et al., Proliferation, odontogenic/osteogenic differentiation, and cytokine production by human stem cells of the apical papilla induced by biomaterials: A comparative study. Clin. Cosmet. Investig. Dent. 11 (2019) 181-193.

DOI: 10.2147/ccide.s211893

Google Scholar

[44] K. Anselme, Osteoblast adhesion on biomaterials. Biomaterials. 21 (2000) 667-681.

DOI: 10.1016/s0142-9612(99)00242-2

Google Scholar

[45] Q. Huang, et al., Enhanced SaOS-2 cell adhesion, proliferation and differentiation on Mg-incorporated micro/nano-topographical TiO2 coatings. Appl. Surf. Sci. 447 (2018) 767-776.

DOI: 10.1016/j.apsusc.2018.04.095

Google Scholar

[46] F. Robotti, et al., A micron-scale surface topography design reducing cell adhesion to implanted materials. Sci Rep. 8 (2018) 1-13.

DOI: 10.1038/s41598-018-29167-2

Google Scholar

[47] K. Oya, et al., Calcification by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG. Biomaterials. 30 (2009) 1281-1286.

DOI: 10.1016/j.biomaterials.2008.11.030

Google Scholar

[48] D.-H. Lee, et al., MC3T3-E1 cell response to pure titanium, zirconia and nano-hydroxyapatite. Int. J. Mod. Phys. B. 23 (2009) 1535-1540.

DOI: 10.1142/s0217979209061226

Google Scholar

[49] F. He, et al., Enhanced initial proliferation and differentiation of MC3T3-E1 cells on HF/HNO3 solution treated nanostructural titanium surface. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 110 (2010) 13-22.

DOI: 10.1016/j.tripleo.2010.03.044

Google Scholar

[50] B. Zhang, et al., Surface characterization and cell response of binary Ti-Ag alloys with CP Ti as material control. J. Mater. Sci. Technol. 28 (2012) 779-784.

DOI: 10.1016/s1005-0302(12)60130-3

Google Scholar

[51] J.-J. Lee, et al., Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity. J Adv Prosthodont. 7 (2015) 172-177.

DOI: 10.4047/jap.2015.7.2.172

Google Scholar

[52] S. Höhn and S. Virtanen, Effect of inflammatory conditions and H2O2 on bare and coated Ti–6Al–4V surfaces: Corrosion behavior, metal ion release and Ca-P formation under long-term immersion in DMEM. Appl. Surf. Sci. 357 (2015) 101-111.

DOI: 10.1016/j.apsusc.2015.08.261

Google Scholar

[53] R. Forrer, K. Gautschi, and H. Lutz, Simultaneous measurement of the trace elements Al, As, B, Be, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr, and Zn in human serum and their reference ranges by ICP-MS. Biol. Trace Elem. Res. 80 (2001) 77-93.

DOI: 10.1385/bter:80:1:77

Google Scholar

[54] N.J. Hallab, et al., Orthopaedic implant related metal toxicity in terms of human lymphocyte reactivity to metal-protein complexes produced from cobalt-base and titanium-base implant alloy degradation. Mol. Cell. Biochem. 222 (2001) 127-136.

DOI: 10.1007/978-1-4615-0793-2_15

Google Scholar

[55] A. Sargeant and T. Goswami, Hip implants - Paper VI - Ion concentrations. Mater. Des. 28 (2007) 155-171.

DOI: 10.1016/j.matdes.2005.05.018

Google Scholar

[56] L. Balcaen, et al., Accurate determination of ultra-trace levels of Ti in blood serum using ICP-MS/MS. Anal. Chim. Acta. 809 (2014) 1-8.

DOI: 10.1016/j.aca.2013.10.017

Google Scholar

[57] L. Rodella, et al., Aluminium exposure induces Alzheimer s disease-like histopathological alterations in mouse brain. Histol. Histopathol. 23 (2008) 433-439.

Google Scholar

[58] C. Exley, The toxicity of aluminium in humans. Morphologie. 100 (2016) 51-55.

Google Scholar

[59] S. Yoganathan, et al., Prevalence and predictors of peripheral neuropathy in nondiabetic children with chronic kidney disease. Muscle Nerve. 57 (2018) 792-798.

DOI: 10.1002/mus.26027

Google Scholar

[60] J. Michl, K.C. Park, and P. Swietach, Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Commun. Biol. 2 (2019) 1-12.

DOI: 10.1038/s42003-019-0393-7

Google Scholar