Distinct Antimicrobial Analysis to Evaluate Multi-Component Wound Dressing Performance

Article Preview

Abstract:

Wound infection hinders adequate healing, being particularly grievous and prevalent in burn wounds and chronic wounds. Wound infection extends inflammation, preventing epithelialization and angiogenesis. Therefore, infection prolongs healing time, steeply increases treatment costs and degrades patients wellbeing. One successful strategy to control wound infection is to apply an active wound dressing, able to eliminate or significantly reduce the microbial population present at the infection site. Silver nanoparticles (AgNPs) are a multipurpose antimicrobial agent with a wide scope of applications which include wound dressings. Nevertheless, several studies denote AgNPs dose-dependent cytotoxicity, and their capability to bypass the blood-brain barrier and induce a neurotoxic effect. Hence, we propose to adopt two different strategies to attempt the simultaneously immobilize and increase the load of AgNPs within the wound dressing fabric. Thus, the envisaged objective is to prevent potential systemic cytotoxicity /through immobilization and to improve its antimicrobial capability due to the higher concentration of AgNPs. Two different approaches were used: i. AgNPs were suspended in an alginate (ALG) solution, ii. AgNPs were embedded in Mordenite (MOR) zeolite, followed by addition of an ALG solution. Both suspensions were incorporated into polyester fabric assisted by its surface activation by dielectric barrier discharge (DBD) plasma treatment. The bactericidal and virucidal effectiveness of each composite was tested against bacteria species known to induce nosocomial infections and a bacteriophage that is a potential surrogate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two distinct antimicrobial analysis were used to provide insights on the antimicrobial effectiveness of the obtained composites and to indirectly assess the release of AgNPs.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] X. Song, L. Melro, J. Padrão, A.I. Ribeiro, Z. He, L. Yu, A. Zille, Nonwoven materials and technologies for medical applications, in: M.I.H. Mondal (Ed.), Fundamentals of Natural Fibers and Textiles/ Antimicrobial Textiles from Natural Resources, In Press (2021).

DOI: 10.1016/b978-0-323-90479-7.00008-7

Google Scholar

[2] E. Ricciotti, G.A. FitzGerald, Prostaglandins and Inflammation, Arterioscler. Thromb. Vasc. Biol. 31(5) (2011) 986-1000.

Google Scholar

[3] K. Raziyeva, Y. Kim, Z. Zharkinbekov, K. Kassymbek, S. Jimi, A. Saparov, Immunology of Acute and Chronic Wound Healing, Biomolecules 11(5) (2021).

DOI: 10.3390/biom11050700

Google Scholar

[4] S. Guo, L.A. DiPietro, Factors Affecting Wound Healing, J. Dent. Res. 89(3) (2010) 219-229.

DOI: 10.1177/0022034509359125

Google Scholar

[5] S.S. Mathew-Steiner, S. Roy, C.K. Sen, Collagen in Wound Healing, Bioeng. 8(5) (2021).

Google Scholar

[6] C.J. van Koppen, R.W. Hartmann, Advances in the treatment of chronic wounds: a patent review, Expert Opin. Ther. Pat. 25(8) (2015) 931-937.

DOI: 10.1517/13543776.2015.1045879

Google Scholar

[7] S.L. Percival, S.M. McCarty, B. Lipsky, Biofilms and Wounds: An Overview of the Evidence, Adv. wound care 4(7) (2015) 373-381.

DOI: 10.1089/wound.2014.0557

Google Scholar

[8] R. Serra, R. Grande, L. Butrico, A. Rossi, U.F. Settimio, B. Caroleo, B. Amato, L. Gallelli, S. de Franciscis, Chronic wound infections: the role of Pseudomonas aeruginosa and Stap hylococcus aureus, ERATCK 13(5) (2015) 605-613.

DOI: 10.1586/14787210.2015.1023291

Google Scholar

[9] L.J. Bessa, P. Fazii, M. Di Giulio, L. Cellini, Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: some remarks about wound infection, Int. Wound J. 12(1) (2015) 47-52.

DOI: 10.1111/iwj.12049

Google Scholar

[10] G.R. Tortella, O. Rubilar, M.C. Diez, J. Padrão, A. Zille, J.C. Pieretti, A.B. Seabra, Advanced Material Against Human (Including Covid‐19) and Plant Viruses: Nanoparticles As a Feasible Strategy, Global Challenges 5(3) (2020).

DOI: 10.1002/gch2.202000049

Google Scholar

[11] A. Molinas, M.V. Turkina, K.-E. Magnusson, A. Mirazimi, E. Vikström, Perturbation of Wound Healing, Cytoskeletal Organization and Cellular Protein Networks during Hazara Virus Infection, Front. Cell Dev. Biol. 5 (2017).

DOI: 10.3389/fcell.2017.00098

Google Scholar

[12] R. Rebelo, J. Padrão, M.M. Fernandes, S. Carvalho, M. Henriques, A. Zille, R. Fangueiro, Aging Effect on Functionalized Silver-Based Nanocoating Braided Coronary Stents, Coatings 10(12) (2020).

DOI: 10.3390/coatings10121234

Google Scholar

[13] O. Betzer, M. Shilo, R. Opochinsky, E. Barnoy, M. Motiei, E. Okun, G. Yadid, R. Popovtzer, The effect of nanoparticle size on the ability to cross the blood–brain barrier: an in vivo study, Nanomedicine 12(13) (2017) 1533-1546.

DOI: 10.2217/nnm-2017-0022

Google Scholar

[14] A. Zille, M.M. Fernandes, A. Francesko, T. Tzanov, M. Fernandes, F.R. Oliveira, L. Almeida, T. Amorim, N. Carneiro, M.F. Esteves, A.P. Souto, Size and Aging Effects on Antimicrobial Efficiency of Silver Nanoparticles Coated on Polyamide Fabrics Activated by Atmospheric DBD Plasma, ACS Appl. Mater. Interfaces 7(25) (2015) 13731-13744.

DOI: 10.1021/acsami.5b04340

Google Scholar

[15] S.H. Ching, N. Bansal, B. Bhandari, Alginate gel particles–A review of production techniques and physical properties, Crit. Rev. Food Sci. Nutr. 57(6) (2015) 1133-1152.

DOI: 10.1080/10408398.2014.965773

Google Scholar

[16] X. Gao, C. Guo, J. Hao, Z. Zhao, H. Long, M. Li, Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives, Int. J. Biol. Macromol. 164 (2020) 4423-4434.

DOI: 10.1016/j.ijbiomac.2020.09.046

Google Scholar

[17] J. Weitkamp, Zeolites and catalysis, Solid State Ionics 131(1-2) (2000) 175-188.

DOI: 10.1016/s0167-2738(00)00632-9

Google Scholar

[18] Y. Wan, Z. Guo, X. Jiang, K. Fang, X. Lu, Y. Zhang, N. Gu, Quasi-spherical silver nanoparticles: Aqueous synthesis and size control by the seed-mediated Lee–Meisel method, J. Colloid Interface Sci. 394 (2013) 263-268.

DOI: 10.1016/j.jcis.2012.12.037

Google Scholar

[19] C.M. Botelho, M.M. Fernandes, J.M. Souza, N. Dias, A.M. Sousa, J.A. Teixeira, R. Fangueiro, A. Zille, New Textile for Personal Protective Equipment-Plasma Chitosan/Silver Nanoparticles Nylon Fabric, Fibers 9(1) (2021).

DOI: 10.3390/fib9010003

Google Scholar

[20] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Meth. 9(7) (2012) 671-675.

DOI: 10.1038/nmeth.2089

Google Scholar

[21] J. Padrão, S. Ribeiro, S. Lanceros-Méndez, L.R. Rodrigues, F. Dourado, Effect of bacterial nanocellulose binding on the bactericidal activity of bovine lactoferrin, Heliyon 6(7) (2020).

DOI: 10.1016/j.heliyon.2020.e04372

Google Scholar

[22] N. Durán, M. Durán, M.B. de Jesus, A.B. Seabra, W.J. Fávaro, G. Nakazato, Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity, Nanomedicine: Nanotechnology, Biology and Medicine 12(3) (2016) 789-799.

DOI: 10.1016/j.nano.2015.11.016

Google Scholar

[23] A. Zille, F.R. Oliveira, A.P. Souto, Plasma Treatment in Textile Industry, Plasma Process. Polym. 12(2) (2015) 98-131.

DOI: 10.1002/ppap.201400052

Google Scholar

[24] J. You, Y. Zhang, Z. Hu, Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles, Colloids Surf. B 85(2) (2011) 161-167.

DOI: 10.1016/j.colsurfb.2011.02.023

Google Scholar