E-Textiles for Sports: A Systematic Review

Article Preview

Abstract:

This work presents a systematic review to provide an overview of the possibilities for coupling, fabrication or embedding of electronics into textiles whilst assuring the capability of these products to meet the requirements of a sports modality. The development of smart wearables systems for sports based on textiles attracts more and more users – motivated by design, by technology, as well as by the expectation of increased performance. A bibliographic search was carried out using the following databases: Scopus, Web of Science, IEEE Xplore and Science Direct. This study includes 32 articles and discusses these in a new taxonomy with three dimensions: measured variable, types of feedback and applications. Of the 23 technologies surveyed, this review showed that these wearable systems are mainly used for vital signs monitoring and to provide feedback on the electrical activity of the heart, with sensors mostly placed in the chest. Usually, the technologies are externally attachable rather than embedded in the textile. We observed that the implementation of design as the process of development of e-textile products is still only scarcely present in these studies.

You might also be interested in these eBooks

Info:

Pages:

37-46

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 151 (2009) 264–9.

DOI: 10.7326/0003-4819-151-4-200908180-00135

Google Scholar

[2] R. Bartalesi, F. Lorussi, D. De Rossi, M. Tesconi, A. Tognetti, Wearable monitoring of lumbar spine curvature by inertial and e-textile sensory fusion, in: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, IEEE, 2010, pp.6373-6376.

DOI: 10.1109/iembs.2010.5627294

Google Scholar

[3] A. Ridolfi, R. Vetter, J. Solà, C. Sartori, Physiological monitoring system for high altitude sports, Procedia Engineering. 2.2 (2010) 2889-2894.

DOI: 10.1016/j.proeng.2010.04.083

Google Scholar

[4] S.K. Bahadir, V. Koncar, F. Kalaoglu, Wearable obstacle detection system fully integrated to textile structures for visually impaired people, Sensors and Actuators A: Physical. 179 (2012) 297-311.

DOI: 10.1016/j.sna.2012.02.027

Google Scholar

[5] R. Harle, S. Taherian, M. Pias, G. Coulouris, A. Hopper, J. Cameron, J. Lasenby, G. Kuntze, I. Bezodis, G. Irwin. D.G. Kerwin, D.G. Towards real-time profiling of sprints using wearable pressure sensors, Computer Communications. 35.6 (2012) 650-660.

DOI: 10.1016/j.comcom.2011.03.019

Google Scholar

[6] J.C. Márquez, F. Seoane, K. Lindecrantz, Textrode functional straps for bioimpedance measurements-experimental results for body composition analysis, European Journal of Clinical Nutrition. 67 (2013) S22-S27.

DOI: 10.1038/ejcn.2012.161

Google Scholar

[7] Y. Mengüç, Y.L. Park, E. Martinez-Villalpando, P. Aubin, M, Zisook, L. Stirling, R.J. Wood, C.J. Walsh, soft wearable motion sensing suit for lower limb biomechanics measurements, in: 2013 IEEE International Conference on Robotics and Automation, IEEE, 2013, pp.5309-5316.

DOI: 10.1109/icra.2013.6631337

Google Scholar

[8] J. Kim, S. Kwon, S. Seo, K. Park, Highly wearable galvanic skin response sensor using flexible and conductive polymer foam, in: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2014, pp.6631-6634.

DOI: 10.1109/embc.2014.6945148

Google Scholar

[9] H. Cho, J.H. Lee, A Study on the Optimal Positions of ECG Electrodes in a Garment for the Design of ECG-Monitoring Clothing for Male, Journal of Medical Systems. 39 (2015) 95.

DOI: 10.1007/s10916-015-0279-2

Google Scholar

[10] G. Paul, R. Torah, S. Beeby, J. Tudor, Novel active electrodes for ECG monitoring on woven textiles fabricated by screen and stencil printing, Sensors and Actuators A: Physical, 221 (2015) 60-66.

DOI: 10.1016/j.sna.2014.10.030

Google Scholar

[11] A. Tognetti, F. Lorussi, N. Carbonaro, D. De Rossi, Wearable goniometer and accelerometer sensory fusion for knee joint angle measurement in daily life, Sensors. 15.11 (2015) 28435-28455.

DOI: 10.3390/s151128435

Google Scholar

[12] S.H. Yoon, K. Huo, K. Ramani, Wearable textile input device with multimodal sensing for eyes-free mobile interaction during daily activities, Pervasive and Mobile Computing. 33 (2016) 17-31.

DOI: 10.1016/j.pmcj.2016.04.008

Google Scholar

[13] F. Lin, A. Wang, Y. Zhuang, M.R. Tomita, W. Xu, Smart insole: A wearable sensor device for unobtrusive gait monitoring in daily life, IEEE Transactions on Industrial Informatics. 12.6 (2016) 2281-2291.

DOI: 10.1109/tii.2016.2585643

Google Scholar

[14] B. Özcan, D. Caligiore, V. Sperati, T. Moretta, G. Baldassarre, Transitional wearable companions: A novel concept of soft interactive social robots to improve social skills in children with autism spectrum disorder, International Journal of Social Robotics. 8.4 (2016) 471-481.

DOI: 10.1007/s12369-016-0373-8

Google Scholar

[15] C. Standoli, M. Guarneri, P. Perego, M. Mazzola, A. Mazzola, G. Andreoni, A smart wearable sensor system for counter-fighting overweight in teenagers, Sensors. 16.8 (2016) 1220.

DOI: 10.3390/s16081220

Google Scholar

[16] M.A. Yokus, R. Foote, J.S. Jur, Printed stretchable interconnects for smart garments: design, fabrication, and characterization, IEEE Sensors Journal. 16.22 (2016) 7967-7976.

DOI: 10.1109/jsen.2016.2605071

Google Scholar

[17] M. Borghetti, M. Serpelloni, E. Sardini, O. Casas, Multisensor system for analyzing the thigh movement during walking, IEEE Sensors Journal.17.15 (2017) 4953-4961.

DOI: 10.1109/jsen.2017.2715857

Google Scholar

[18] S.W. Kang, H. Choi, H.I. Park, B.G. Choi, H. Im, D. Shin, Y.G. Jung, L.Y. Lee, H.W. Park, S. Park, J.S. Roh, The development of an IMU integrated clothes for postural monitoring using conductive yarn and interconnecting technology, Sensors. 17.11 (2017) 2560.

DOI: 10.3390/s17112560

Google Scholar

[19] P. Parzer, A. Sharma, A. Vogl, J. Steimle, A. Olwal, M. Haller, SmartSleeve: real-time sensing of surface and deformation gestures on flexible, interactive textiles, using a hybrid gesture detection pipeline, in: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, ACM, 2017, pp.565-577.

DOI: 10.1145/3126594.3126652

Google Scholar

[20] C.L. Shen, T.H. Huang, P.C. Hsu, Y.C. Ko, F.L. Chen, W.C. Wang, T. Kao, C.T. Chan, Respiratory Rate Estimation by Using ECG, Impedance, and Motion Sensing in Smart Clothing, Journal of Medical and Biological Engineering. 37.6 (2017) 826-842.

DOI: 10.1007/s40846-017-0247-z

Google Scholar

[21] Q. Wang, L. De Baets, A. Timmermans, W. Chen, L. Giacolini, T. Matheve, P. Markopoulos, Motor control training for the shoulder with smart garments, Sensors. 17.7 (2017) 1687.

DOI: 10.3390/s17071687

Google Scholar

[22] B. Zhou, M. Sundholm, J. Cheng, H. Cruz, P. Lukowicz, Measuring muscle activities during gym exercises with textile pressure mapping sensors, Pervasive and Mobile Computing. 38 (2017) 331-345.

DOI: 10.1016/j.pmcj.2016.08.015

Google Scholar

[23] Y. Wei, Y. Wu, J. Tudor, A real-time wearable emotion detection headband based on EEG measurement, Sensors and Actuators A: Physical. 263 (2017) 614-621.

DOI: 10.1016/j.sna.2017.07.012

Google Scholar

[24] X. An, G. Stylios, A Hybrid Textile Electrode for Electrocardiogram (ECG) Measurement and Motion Tracking, Materials. 11.10 (2018) 1887.

DOI: 10.3390/ma11101887

Google Scholar

[25] J. Jia, C. Xu, S. Pan, S. Xia, P. Wei, H.Y. Noh, P. Zhang, X. Jiang, Conductive Thread-Based Textile Sensor for Continuous Perspiration Level Monitoring, Sensors. 18.11 (2018) 3775.

DOI: 10.3390/s18113775

Google Scholar

[26] H. Jin, Z. Yang, S. Kumar, J.I. Hong, Towards wearable everyday body-frame tracking using passive RFIDs. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 1.4 (2018) 145.

DOI: 10.1145/3161199

Google Scholar

[27] E. Lee, J.S. Roh, S. Kim, User-centered Interface Design Approach for a Smart Heated Garment, Fibers and Polymers. 19.1 (2018) 238-247.

DOI: 10.1007/s12221-018-7674-x

Google Scholar

[28] B.S. Lin, I. Lee, S.Y. Yang, Y.C. Lo, J. Lee, J.L. Chen, Design of an Inertial-Sensor-Based Data Glove for Hand Function Evaluation, Sensors. 18.5 (2018) 1545.

DOI: 10.3390/s18051545

Google Scholar

[29] P. Lugoda, T. Hughes-Riley, C. Oliveira, R. Morris, T. Dias, Developing novel temperature sensing garments for health monitoring applications, Fibers. 6.3 (2018) 46.

DOI: 10.3390/fib6030046

Google Scholar

[30] R, Velázquez, E. Pissaloux, P. Rodrigo, M. Carrasco, N. Giannoccaro, A. Lay-Ekuakille, An Outdoor Navigation System for Blind Pedestrians Using GPS and Tactile-Foot Feedback, Applied Sciences. 8.4 (2018) 578.

DOI: 10.3390/app8040578

Google Scholar

[31] A. Paiva, A. Catarino, H. Carvalho, O, Postolache, G, Postolache, F. Ferreira, Design of a Long Sleeve T-Shirt with ECG and EMG for Athletes and Rehabilitation Patients, in: International Conference on Innovation, Engineering and Entrepreneurship, Springer, Cham, 2018, pp.244-250.

DOI: 10.1007/978-3-319-91334-6_34

Google Scholar

[32] A. Paiva, D. Vieira, J. Cunha, H. Carvalho, B. Providência, Design of a smart garment for cycling, in: International Conference on Innovation, Engineering and Entrepreneurship, Springer, Cham, 2018, pp.229-235.

DOI: 10.1007/978-3-319-91334-6_32

Google Scholar

[33] E. Mencarini, C. Leonardi, A. Cappelletti, D. Giovanelli, A. De Angeli, M. Zancanaro, Co-designing wearable devices for sports: The case study of sport climbing, International Journal of Human-Computer Studies. 124 (2019) 26-43.

DOI: 10.1016/j.ijhcs.2018.10.005

Google Scholar

[34] D. Bauer, R. Wutzke, T. Bauernhansl, Wear@ Work–A new approach for data acquisition using wearables, Procedia CIRP. 50 (2016) 529-534.

DOI: 10.1016/j.procir.2016.04.121

Google Scholar

[35] C. Zeagler, Where to wear it: functional, technical, and social considerations in on-body location for wearable technology 20 years of designing for wearability, in: Proceedings of the 2017 ACM International Symposium on Wearable Computers, ACM, 2017, pp.150-157.

DOI: 10.1145/3123021.3123042

Google Scholar

[36] F. Gemperle, C. Kasabach, J. Stivoric, M. Bauer, R. Martin, Design for wearability, in: Digest of Papers, Second International Symposium on Wearable Computers (Cat. No. 98EX215), IEEE, 1998, pp.116-122.

DOI: 10.1109/iswc.1998.729537

Google Scholar

[37] G. Cho, S. Lee, J. Cho, Review and reappraisal of smart clothing, International Journal of Human-Computer Interaction. 25.6 (2009) 582-617.

DOI: 10.1080/10447310902997744

Google Scholar

[38] S. Mecheels, B. Schroth, C. Breckenfelder, Smart clothes: Intelligente textile produkte auf der basis innovativer mikrotechnologie; expertensicht-beispiele-empfehlungen, Hohenstein Institute, Bönnigheim, (2004).

Google Scholar

[39] L.Yao, J. Ou, C.Y Cheng, H. Steiner, W. Wang, G. Wang, H. Ishii, BioLogic: Natto cells as nanoactuators for shape changing interfaces, in: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, ACM, 2015, pp.1-10.

DOI: 10.1145/2702123.2702611

Google Scholar