Evaluation of the Malalignment Varus - Valgus in Total Knee Arthroplasty Designed for Deep Knee Flexion Using Knee Kinematic Motion Simulator

Article Preview

Abstract:

Revision total knee arthroplasties cause performed aseptic loosening, instability, and polyethylene wear. Separation or removal of the femoral component has been observed and this has the potential to severely damage the polyethylene component. In most cases 90% of the patients examined experienced significant medial or lateral condylar lift at some stage during the gait cycle. Using the MRI, a normal knee has maximum lateral lift is approx. 6.7 mm and maximum medial lift is approx. 2.1 mm, when a varus strees applied at a 90° knee flexion. Elevation of the lateral condyle due to valgus malalignment will distribute more contact force on the medial condyle. In this study, a polyethylene component of a posterior-stabilized right knee joint implant was developed to facilitate a high range of motion (ROM). Malalignment valgus was observed with the axes of knee motion joint implants were varied from 0°, 2°, 3° to 5 and knee bend measurements at 30°, 60°, 90°, 120°, and 150° of knee flexion. Using the knee kinematic motion simulator, the modified polyethylene component resulted in 0° malalignment there is no gap of the femoral component with the polyethylene component, from 30° to 150° of knee flexion. At 2° malalignment, the femoral component was raised by 0.5 mm at a 90° to 150° knee flexion and increased with increasing knee flexion. Maximum gap occurs at 5° malalignment in the amount of 5 mm at 150° of knee flexion. The aim of this study was therefore to evaluation malalignment valgus of the flexed knee using knee kinematic motion simulator, with reference to the tibiofemoral flexion gap. The result that the modified design is expected in an narrow down gap between femoral and polyethylene component used knee kinematic motion simulator, this accommodate deep knee flexion movement in daily activities and reduce the possibility of subluxation and dislocation at the polyethylene component during deep knee flexion. A wide gap between the femoral component and the polyethylene component and a significant amount of contact force in the medial condyle region might be the explanation for polyethylene component damage. It is expected that potential medial or lateral condylar lift at some stage during the gait cycle can be reduced.

You might also be interested in these eBooks

Info:

Pages:

119-130

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Choi and H. J. Ra: Patient Satisfaction after Total Knee Arthroplasty, Knee Surg Relat Res 2016; 28(1): 1-15 http://dx.doi.org/10.5792/ksrr.2016.28.1.1.

DOI: 10.5792/ksrr.2016.28.1.1

Google Scholar

[2] O. Robertsson, M. Dunbar, T. Pehrsson, K. Knutson, and L. Lidgren : Patient satisfaction after knee arthroplasty A report on 27 , 372 knees operated on between 1981 and 1995 in Sweden, Acta Orthop Scand 2000; 71 (3): 262–267.

DOI: 10.1080/000164700317411852

Google Scholar

[3] F. S. Haddad, M. Khan, K. Osman, G. Green : The epidemiology of failure in total knee arthroplasty, Bone Joint J 2016;98-B(1 Suppl A):105–12.

DOI: 10.1302/0301-620x.98b1.36293

Google Scholar

[4] K. Thiele, C. Perka, G. Matziolis, H. O. Mayr, M. Sostheim, and R. Hube : Current Failure Mechanisms After Knee Arthroplasty Have Changed: Polyethylene Wear Is Less Common in Revision Surgery, J Bone Joint Surg Am. 2015;97:715-20 http://dx.doi.org/10.2106/JBJS.M. 01534.

DOI: 10.2106/jbjs.m.01534

Google Scholar

[5] M. S. Austin and J. J. Purtill: Revision Total Knee Arthroplasty Infection Incidence and Predictors, Clin Orthop Relat Res (2010) 468:2052–2059 DOI 10.1007/s11999-010-1308-6.

DOI: 10.1007/s11999-010-1308-6

Google Scholar

[6] K. J. Mulhall, F. Tr, and H. M. Ghomrawi : Current Etiologies and Modes of Failure in Total Knee Arthroplasty Revision, Clinical Orthopaedics and Related Research Number 446, p.45–50 no. 446, 2006,.

DOI: 10.1097/01.blo.0000214421.21712.62

Google Scholar

[7] B. R. Levine, B. D. Springer, and G. J. Golladay : Arthroplasty Today Highlights of the 2019 American Joint Replacement Registry Annual Report, Arthroplast. Today, vol. 6, no. 4, p.998–1000, 2020,.

DOI: 10.1016/j.artd.2020.09.010

Google Scholar

[8] J. Argenson, S. Parratte, and G. R. Scuderi : Patient-reported Outcome Correlates With Knee Function After a Single-design Mobile-bearing TKA, Clin Orthop Relat Res (2008) 466:2669–2676 DOI 10.1007/s11999-008-0418-x.

DOI: 10.1007/s11999-008-0418-x

Google Scholar

[9] S. E. Culliton, D. M. Bryant, T. J. Overend, S. J. Macdonald, and B. M. Chesworth : The Relationship Between Expectations and Satisfaction in Patients Undergoing Primary Total Knee Arthroplasty, J. Arthroplasty, vol. 27, no. 3, p.490–492, 2012,.

DOI: 10.1016/j.arth.2011.10.005

Google Scholar

[10] S. Matsuda and S. Kawahara : Postoperative Alignment and ROM Affect Patient Satisfaction After TKA, Clin Orthop Relat Res, (2013) 471:127–133, Doi 10.1007/s11999-012-2533-y.

DOI: 10.1007/s11999-012-2533-y

Google Scholar

[11] J. R. Martin, T. S. Watters, D. L. Levy, J. M. Jennings, and D. A. Dennis : Removing a well- fi xed femoral sleeve during revision total knee arthroplasty, Arthroplast. Today, vol. 2, no. 4, p.171–175, 2016,.

DOI: 10.1016/j.artd.2016.05.005

Google Scholar

[12] T. Hiranaka, T. Tanaka, K. Okimura, and T. Fujishiro : Manipulation of Tibial Component to Ensure Avoidance of Bearing Separation from the Vertical Wall of Tibial Component in Oxford Unicompartmental Arthroplasty, Clinics in Orthopedic Surgery 2021;13:123-126 https://doi.org/10.4055/cios20277.

DOI: 10.4055/cios20277

Google Scholar

[13] S.J. Incavo, K. M. Coughlin, and B. D. Beynnon : Femoral Component Sizing in Total Knee Arthroplasty Size Matched Resection Versus Flexion Space Balancing, The Journal of Arthroplasty Vol. 19 No. 4 2004,.

DOI: 10.1016/j.arth.2003.12.071

Google Scholar

[14] J. B. Stiehl, D. A. Dennis, R. D. Komistek, and P. A. Keblish, Satoshi : In Vivo Healthy Knee Kinematics during Dynamic Full Flexion, BioMed Research International Volume 2013, Article ID 717546, 4 pages http://dx.doi.org/10.1155/2013/717546.

Google Scholar

[15] D. A. Dennis, R. D. Komistek, S. A. Walker, E. J. Cheal, and J. B. Stiehl : Femoral condylar lift-off in vivo in total knee arthroplasty, J. Bone Jt. Surg. - Ser. B, vol. 83, no. 1, p.33–39, 2001,.

DOI: 10.1302/0301-620x.83b1.0830033

Google Scholar

[16] M. Taylor, D. S. Barrett, and D. Deffenbaugh : Influence of Loading and Activity on the Primary Stability of Cementless Tibial Trays, Journal of Orthopaedic Research, p.28–30, 2012,.

DOI: 10.1002/jor.22056

Google Scholar

[17] H. Zhou, A. Liu, D. Wang, X. Zeng, S. Wei, and C. Wang : Kinematics of lower limbs of healthy Chinese people sitting cross-legged, Prosthet. Orthot. Int., vol. 37, no. 5, p.369–374, 2013,.

DOI: 10.1177/0309364612470964

Google Scholar

[18] M. S. Hefzy, B. P. Kelly, and T. D. V. Cooke : Kinematics of the knee joint in deep flexion: A radiographic assessment, Med. Eng. Phys., vol. 20, no. 4, p.302–307, 1998,.

DOI: 10.1016/s1350-4533(98)00024-1

Google Scholar

[19] N. Aiman, N. Izmin, F. Hazwani, M. Todo, and A. H. Abdullah : Risk of Bone Fracture in Resurfacing Hip Arthroplasty at Varus and Valgus Implant Placements, International Journal of Technology, vol. 11, no. October, p.1025–1035, 2020,.

DOI: 10.14716/ijtech.v11i5.4312

Google Scholar

[20] S. P. Garceau, Y. S. Warschawski, A. Tang, E. B. Sanders, R. M. Schwarzkopf, and D. J. Backstein : The Effect of Polyethylene Liner Thickness on Patient Outcomes and Failure After Primary Total Knee Arthroplasty, J. Arthroplasty, vol. 35, no. 8, p.2072–2075, 2020,.

DOI: 10.1016/j.arth.2020.03.017

Google Scholar

[21] D. A. Crawford, L. Lapsley, J. M. Hurst, M. J. Morris, A. V. L. Jr, and K. R. Berend : Impact of Polyethylene Thickness on Clinical Outcomes and Survivorship in Medial Mobile-Bearing Unicondylar Knee Arthroplasty, J. Arthroplasty, vol. 36, no. 7, p.2440–2444, 2021,.

DOI: 10.1016/j.arth.2021.02.062

Google Scholar

[22] P. Tzanetis, M. A. Marra, R. Fluit, B. Koopman, and N. Verdonschot : Biomechanical Consequences of Tibial Insert Thickness after Total Knee Arthroplasty : A Musculoskeletal Simulation Study, Appl. Sci. 2021, 11, 2423. https:// doi.org/10.3390/app11052423.

DOI: 10.3390/app11052423

Google Scholar

[23] N. Kumar, C. Yadav, R. Raj, and S. Yadav : ScienceDirect Fracture of the polyethylene tibial post in a posterior stabilized knee prosthesis : A case report and review of literature, J. Orthop., vol. 12, no. 3, p.160–163, 2015,.

DOI: 10.1016/j.jor.2015.01.002

Google Scholar

[24] A. Alkheraiji, S. Borai, R. Alfadhil, and F. Aljassir : International Journal of Surgery Case Reports Traumatic fracture of the polyethylene tibial post and cone in a posterior-stabilized total knee arthroplasty : A case report, Int. J. Surg. Case Rep., vol. 97, no. July, p.107437, 2022,.

DOI: 10.1016/j.ijscr.2022.107437

Google Scholar

[25] J. Triwardono, S. Supriadi, Y. Whulanza, and A. S. Saragih : Evaluation of the Contact Area in Total Knee Arthroplasty Designed for Deep Knee Flexion, International Journal of Technology vol. 12, no. October, p.1312–1322, 2021,.

DOI: 10.14716/ijtech.v12i6.5193

Google Scholar

[26] J. Triwardono et al. : Finite Element Analysis Contact Stresses on Tibiofemoral Joint and Post Polyethylene Components Used to Evaluated Predesign Knee Implant, Journal of Biomimetics, Biomaterials and Biomedical Engineering vol. 55, p.46–55, 2022, https://doi.org/10.4028/p-uv1qax.

DOI: 10.4028/p-uv1qax

Google Scholar

[27] M. Ishikawa, S. Kuriyama, H. Ito, and M. Furu : The Knee Kinematic alignment produces near-normal knee motion but increases contact stress after total knee arthroplasty : A case study on a single implant design, Knee, 2015,.

DOI: 10.1016/j.knee.2015.02.019

Google Scholar

[28] V. Pinskerova, K. M. Samuelson, J. Stammers, K. Maruthainar, A. Sosna, and M. A. R. Freeman : The knee in full flexion: An anatomical study, J. Bone Jt. Surg. - Ser. B, vol. 91, no. 6, p.830–834, 2009,.

DOI: 10.1302/0301-620x.91b6.22319

Google Scholar

[29] G. Szabò, G. Lovász, T. Kustos, and A. Bener : A prospective comparative analysis of mobility in osteoarthritic knees, J. Bone Joint Surg. Br., vol. 82-B, no. 8, p.1167–1169, 2000,.

DOI: 10.1302/0301-620x.82b8.0821167

Google Scholar

[30] Y. Kadoya, S. Nakagawa, A. Kobayashi, and K. Takaoka : The flexion gap in normal knees, J. Bone Joint Surg. Br., vol. 86, no. 8, p.1133–1136, 2004,.

DOI: 10.1302/0301-620x.86b8.15246

Google Scholar