Synthetic and Natural Polymeric Drug Delivery Systems - A Comprehensive Overview of Polycaprolactone and Glucan Particles

Article Preview

Abstract:

The small size and large surface area of nano and microparticles are interesting properties for drug delivery, hypothetically capable of overcoming some limitations of conventional therapeutic medicine and diagnostic agents. Although their features are highly influenced by the polymer characteristics, these particles are known for encapsulating high amounts of drugs, improving their stability and bioavailability and enabling different administration routes. Among synthetic polymers, polycaprolactone (PCL) nanoparticles are widely studied in drug delivery due to the polymer excellent biocompatibility and degradability and for its ability to blend with other polymers. On its turn, among natural polymers, glucan has been emerging as a promising candidate for drug delivery particularly due to structure forming abilities and its immunomodulatory effects. Under the safe-by-design approach for the development of polymeric particles, this review encloses a comprehensive summary of production methods, physicochemical characteristics and immunotoxicity profiles of PCL and glucan particles developed for drug delivery.

You might also be interested in these eBooks

Info:

Pages:

39-58

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.A. Omran, Chapter 1: Fundamentals of Nanotechnology and Nanobiotechnology, Nanobiotechnology: A Multidisciplinary Field of Science Springer Nature Switzerland AG, 2020. pp.1-36.

DOI: 10.1007/978-3-030-46071-6_1

Google Scholar

[2] C.J. Cheng, G.T. Tietjen, J.K. Saucier-Sawyer, W.M. Saltzman, A holistic approach to targeting disease with polymeric nanoparticles, Nature Reviews Drug Discovery 14 (2015) 239-47.

DOI: 10.1038/nrd4503

Google Scholar

[3] T. Pulingam, P. Foroozandeh, J.-A. Chuah, K. Sudesh, Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles, Nanomaterials 12 (2022) 576.

DOI: 10.3390/nano12030576

Google Scholar

[4] C.I.C. Crucho, M.T. Barros, Polymeric nanoparticles: A study on the preparation variables and characterization methods, Materials Science and Engineering: C 80 (2017) 771-84.

DOI: 10.1016/j.msec.2017.06.004

Google Scholar

[5] A. Bhowmik, R. Khan, M.K. Ghosh, Blood Brain Barrier: A Challenge for Effectual Therapy of Brain Tumors, BioMed Research International 2015 (2015) 1-20.

DOI: 10.1155/2015/320941

Google Scholar

[6] K. Park, A. Otte, F. Sharifi, J. Garner, S. Skidmore, H. Park, et al., Formulation composition, manufacturing process, and characterization of poly(lactide-co-glycolide) microparticles, Journal of Controlled Release 329 (2021) 1150-61.

DOI: 10.1016/j.jconrel.2020.10.044

Google Scholar

[7] H. Pawar, S.R. Wankhade, D.K. Yadav, S. Suresh, Development and evaluation of co-formulated docetaxel and curcumin biodegradable nanoparticles for parenteral administration, Pharmaceutical Development and Technology 21 (2015) 725-36.

DOI: 10.3109/10837450.2015.1049706

Google Scholar

[8] P. Ebrahimnejad, A. Sodagar Taleghani, K. Asare-Addo, A. Nokhodchi, An updated review of folate-functionalized nanocarriers: A promising ligand in cancer, Drug Discovery Today 27 (2022) 471-89.

DOI: 10.1016/j.drudis.2021.11.011

Google Scholar

[9] W.H. De Jong, P.J. Borm, Drug delivery and nanoparticles:applications and hazards, Int J Nanomedicine 3 (2008) 133-49.

Google Scholar

[10] N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad, Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release, Chemical Reviews 116 (2016) 2602-63.

DOI: 10.1021/acs.chemrev.5b00346

Google Scholar

[11] D. Tuncel, H.V. Demir, Conjugated polymer nanoparticles, Nanoscale 2 (2010) 484.

Google Scholar

[12] V.R. Sinha, K. Bansal, R. Kaushik, R. Kumria, A. Trehan, Poly-ϵ-caprolactone microspheres and nanospheres: an overview, International Journal of Pharmaceutics 278 (2004) 1-23.

DOI: 10.1016/j.ijpharm.2004.01.044

Google Scholar

[13] A. Luciani, V. Coccoli, S. Orsi, L. Ambrosio, P.A. Netti, PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles, Biomaterials 29 (2008) 4800-7.

DOI: 10.1016/j.biomaterials.2008.09.007

Google Scholar

[14] P. L, Microcapsules PCL with Essential Oil Citronella, Advances in Tissue Engineering & Regenerative Medicine: Open Access 2 (2017).

DOI: 10.15406/atroa.2017.02.00024

Google Scholar

[15] M.A. Woodruff, D.W. Hutmacher, The return of a forgotten polymer—Polycaprolactone in the 21st century, Progress in Polymer Science 35 (2010) 1217-56.

DOI: 10.1016/j.progpolymsci.2010.04.002

Google Scholar

[16] C.-S. Wu, H.-T. Liao, Polycaprolactone-Based Green Renewable Ecocomposites Made from Rice Straw Fiber: Characterization and Assessment of Mechanical and Thermal Properties, Industrial & Engineering Chemistry Research 51 (2012) 3329-37.

DOI: 10.1021/ie202002p

Google Scholar

[17] T.K. Dash, V.B. Konkimalla, Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review, Journal of Controlled Release 158 (2012) 15-33.

DOI: 10.1016/j.jconrel.2011.09.064

Google Scholar

[18] K.W. Ng, H.N. Achuth, S. Moochhala, T.C. Lim, D.W. Hutmacher, In vivo evaluation of an ultra-thin polycaprolactone film as a wound dressing, Journal of Biomaterials Science, Polymer Edition 18 (2012) 925-38.

DOI: 10.1163/156856207781367693

Google Scholar

[19] R.M. Mohamed, K. Yusoh, A Review on the Recent Research of Polycaprolactone (PCL), Advanced Materials Research 1134 (2015) 249-55.

DOI: 10.4028/www.scientific.net/amr.1134.249

Google Scholar

[20] B. Azimi, P. Nourpanah, M. Rabiee, S. Arbab, Poly (∊-caprolactone) Fiber: An Overview, Journal of Engineered Fibers and Fabrics 9 (2014) 155892501400900.

DOI: 10.1177/155892501400900309

Google Scholar

[21] D. Puppi, C. Mota, M. Gazzarri, D. Dinucci, A. Gloria, M. Myrzabekova, et al., Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering, Biomedical Microdevices 14 (2012) 1115-27.

DOI: 10.1007/s10544-012-9677-0

Google Scholar

[22] H. Fessi, F. Puisieux, J.P. Devissaguet, N. Ammoury, S. Benita, Nanocapsule formation by interfacial polymer deposition following solvent displacement, International Journal of Pharmaceutics 55 (1989) R1-R4.

DOI: 10.1016/0378-5173(89)90281-0

Google Scholar

[23] C.E. Mora-Huertas, H. Fessi, A. Elaissari, Polymer-based nanocapsules for drug delivery, International Journal of Pharmaceutics 385 (2010) 113-42.

DOI: 10.1016/j.ijpharm.2009.10.018

Google Scholar

[24] S.F. Chin, A. Azman, S.C. Pang, Size Controlled Synthesis of Starch Nanoparticles by a Microemulsion Method, Journal of Nanomaterials 2014 (2014) 1-7.

DOI: 10.1155/2014/763736

Google Scholar

[25] G.J. Colmenares-Roldan, L.M. Agudelo-Gomez, R. Pinal, L.M. Hoyos Palacio, Production of bioabsorbible nanoparticles of polycaprolactone by using a tubular recirculating system, Dyna 85 (2018) 277-82.

DOI: 10.15446/dyna.v85n204.62292

Google Scholar

[26] W. Badri, K. Miladi, Q.A. Nazari, H. Fessi, A. Elaissari, Effect of process and formulation parameters on polycaprolactone nanoparticles prepared by solvent displacement, Colloids and Surfaces A: Physicochemical and Engineering Aspects 516 (2017) 238-44.

DOI: 10.1016/j.colsurfa.2016.12.029

Google Scholar

[27] S. Singh, A.N. Singh, A. Verma, V.K. Dubey, Biodegradable Polycaprolactone (PCL) Nanosphere Encapsulating Superoxide Dismutase and Catalase Enzymes, Applied Biochemistry and Biotechnology 171 (2013) 1545-58.

DOI: 10.1007/s12010-013-0427-4

Google Scholar

[28] M. Dhanka, C. Shetty, R. Srivastava, Injectable methotrexate loaded polycaprolactone microspheres: Physicochemical characterization, biocompatibility, and hemocompatibility evaluation, Materials Science and Engineering: C 81 (2017) 542-50.

DOI: 10.1016/j.msec.2017.08.055

Google Scholar

[29] J.B.E. Mendes, M.K. Riekes, V.M. de Oliveira, M.D. Michel, H.K. Stulzer, N.M. Khalil, et al., PHBV/PCL Microparticles for Controlled Release of Resveratrol: Physicochemical Characterization, Antioxidant Potential, and Effect on Hemolysis of Human Erythrocytes, The Scientific World Journal 2012 (2012) 1-13.

DOI: 10.1100/2012/542937

Google Scholar

[30] Y. Wang, P. Li, Z. Peng, F.H. She, L.X. Kong, Microencapsulation of nanoparticles with enhanced drug loading for pH-sensitive oral drug delivery for the treatment of colon cancer, Journal of Applied Polymer Science 129 (2013) 714-20.

DOI: 10.1002/app.38582

Google Scholar

[31] N. Sathyamoorthy, D. Magharla, P. Chintamaneni, S. Vankayalu, Optimization of paclitaxel loaded poly (ε-caprolactone) nanoparticles using Box Behnken design, Beni-Suef University Journal of Basic and Applied Sciences 6 (2017) 362-73.

DOI: 10.1016/j.bjbas.2017.06.002

Google Scholar

[32] A.T. Alex, A. Joseph, G. Shavi, J.V. Rao, N. Udupa, Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery, Drug Delivery 23 (2014) 2144-53.

DOI: 10.3109/10717544.2014.948643

Google Scholar

[33] A. Maaz, W. Abdelwahed, I.A. Tekko, S. Trefi, Influence of nanoprecipitation method parameters on nanoparticles loaded with gatifloxacin for ocular drug delivery, International Journal of Academic Scientific Research 3 (2015) 01-12.

Google Scholar

[34] F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad, Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles, Molecular Pharmaceutics 5 (2008) 505-15.

DOI: 10.1021/mp800051m

Google Scholar

[35] R. Li, X. Li, L. Xie, D. Ding, Y. Hu, X. Qian, et al., Preparation and evaluation of PEG–PCL nanoparticles for local tetradrine delivery, International Journal of Pharmaceutics 379 (2009) 158-66.

DOI: 10.1016/j.ijpharm.2009.06.007

Google Scholar

[36] S. Jesus, E.H. Fragal, A.F. Rubira, E.C. Muniz, A.J.M. Valente, O. Borges, The Inclusion of Chitosan in Poly-ε-caprolactone Nanoparticles: Impact on the Delivery System Characteristics and on the Adsorbed Ovalbumin Secondary Structure, AAPS PharmSciTech 19 (2017) 101-13.

DOI: 10.1208/s12249-017-0822-1

Google Scholar

[37] M.R. Tavares, L.R.d. Menezes, J.C. Dutra Filho, L.M. Cabral, M.I.B. Tavares, Surface-coated polycaprolactone nanoparticles with pharmaceutical application: Structural and molecular mobility evaluation by TD-NMR, Polymer Testing 60 (2017) 39-48.

DOI: 10.1016/j.polymertesting.2017.01.032

Google Scholar

[38] R.P. Singh, P. Ramarao, Accumulated Polymer Degradation Products as Effector Molecules in Cytotoxicity of Polymeric Nanoparticles, Toxicological Sciences 136 (2013) 131-43.

DOI: 10.1093/toxsci/kft179

Google Scholar

[39] R.G.d.J. Vásquez Marcano, T.T. Tominaga, N.M. Khalil, L.S. Pedroso, R.M. Mainardes, Chitosan functionalized poly (ε-caprolactone) nanoparticles for amphotericin B delivery, Carbohydrate Polymers 202 (2018) 345-54.

DOI: 10.1016/j.carbpol.2018.08.142

Google Scholar

[40] L.B. Prado, S.C. Huber, A. Barnabé, F.D.S. Bassora, D.S. Paixão, N. Duran, et al., Characterization of PCL and Chitosan Nanoparticles as Carriers of Enoxaparin and Its Antithrombotic Effect in Animal Models of Venous Thrombosis, Journal of Nanotechnology 2017 (2017) 1-7.

DOI: 10.1155/2017/4925495

Google Scholar

[41] H. Danafar, U. Schumacher, MPEG–PCL copolymeric nanoparticles in drug delivery systems, Cogent Medicine 3 (2016) 1142411.

DOI: 10.1080/2331205x.2016.1142411

Google Scholar

[42] B.C. Lehtovaara, M.S. Verma, F.X. Gu, Synthesis of curdlan-graft-poly(ethylene glycol) and formulation of doxorubicin-loaded core–shell nanoparticles, Journal of Bioactive and Compatible Polymers 27 (2012) 3-17.

DOI: 10.1177/0883911511432511

Google Scholar

[43] M. Nasrollahzadeh, M. Sajjadi, Z. Nezafat, N. Shafiei, Polysaccharide biopolymer chemistry, (2021) 45-105.

DOI: 10.1016/b978-0-12-822108-2.00019-3

Google Scholar

[44] Z. Cai, H. Zhang, Recent progress on curdlan provided by functionalization strategies, Food Hydrocolloids 68 (2017) 128-35.

DOI: 10.1016/j.foodhyd.2016.09.014

Google Scholar

[45] J. Hwang, K. Lee, A.A. Gilad, J. Choi, Synthesis of Beta-glucan Nanoparticles for the Delivery of Single Strand DNA, Biotechnology and Bioprocess Engineering 23 (2018) 144-9.

DOI: 10.1007/s12257-018-0003-4

Google Scholar

[46] National Center for Biotechnology Information.(2022). PubChem Compound Summary for CID 439262, beta-Glucan August 4, 2022: https://pubchem.ncbi.nlm.nih.gov/compound/beta-glucan.

Google Scholar

[47] X.-B. Zhan, C.-C. Lin, H.-T. Zhang, Recent advances in curdlan biosynthesis, biotechnological production, and applications, Applied Microbiology and Biotechnology 93 (2011) 525-31.

DOI: 10.1007/s00253-011-3740-2

Google Scholar

[48] M. Wang, C. Chen, G. Sun, W. Wang, H. Fang, Effects of curdlan on the color, syneresis, cooking qualities, and textural properties of potato starch noodles, Starch - Stärke 62 (2010) 429-34.

DOI: 10.1002/star.201000007

Google Scholar

[49] J.-L. Zhou, F. Song, J.-F. Tian, W.-C. Nie, X.-L. Wang, Y.-Z. Wang, Electrostatic wrapping of doxorubicin with curdlan to construct an efficient pH-responsive drug delivery system, Nanotechnology 28 (2017) 295601.

DOI: 10.1088/1361-6528/aa75b5

Google Scholar

[50] M.-Y. Kim, C.-M. Lee, J.-N. Kim, K.-O. Cho, K.-Y. Lee, Prevention of post-surgical peritoneal adhesion in rats using curdlan and gellan gum hydrogels, Macromolecular Research 20 (2013) 1289-93.

DOI: 10.1007/s13233-012-0184-1

Google Scholar

[51] V. Vetvicka, L. Vannucci, P. Sima, β‐glucan as a new tool in vaccine development, Scandinavian Journal of Immunology 91 (2019).

DOI: 10.1111/sji.12833

Google Scholar

[52] D. Akramienė, A. Kondrotas, J. Didžiapetrienė, E. Kėvelaitis, Effects of ß-glucans on the immune system, Medicina 43 (2007) 597.

DOI: 10.3390/medicina43080076

Google Scholar

[53] W.-C. Song, Crosstalk between Complement and Toll-Like Receptors, Toxicologic Pathology 40 (2011) 174-82.

DOI: 10.1177/0192623311428478

Google Scholar

[54] M. Zhang, J.A. Kim, A.Y.-C. Huang, Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles, Frontiers in Immunology 9 (2018).

DOI: 10.3389/fimmu.2018.00341

Google Scholar

[55] M. Novak, V. Vetvicka, β-Glucans, History, and the Present: Immunomodulatory Aspects and Mechanisms of Action, Journal of Immunotoxicology 5 (2008) 47-57.

DOI: 10.1080/15476910802019045

Google Scholar

[56] L. Sun, Y. Zhao, The Biological Role of Dectin-1 in Immune Response, International Reviews of Immunology 26 (2009) 349-64.

Google Scholar

[57] G.C.-F. Chan, W.K. Chan, D.M.-Y. Sze, The effects of β-glucan on human immune and cancer cells, Journal of Hematology & Oncology 2 (2009).

Google Scholar

[58] B.-D. Kim, K. Na, H.-K. Choi, Preparation and characterization of solid lipid nanoparticles (SLN) made of cacao butter and curdlan, European Journal of Pharmaceutical Sciences 24 (2005) 199-205.

DOI: 10.1016/j.ejps.2004.10.008

Google Scholar

[59] M. Colaço, A.P. Marques, S. Jesus, A. Duarte, O. Borges, Safe-by-Design of Glucan Nanoparticles: Size Matters When Assessing the Immunotoxicity, Chemical Research in Toxicology 33 (2020) 915-32.

DOI: 10.1021/acs.chemrestox.9b00467

Google Scholar

[60] X. Jia, Q. Liu, S. Zou, X. Xu, L. Zhang, Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity, Carbohydrate Polymers 117 (2015) 434-42.

DOI: 10.1016/j.carbpol.2014.09.088

Google Scholar

[61] R.K. Subedi, K.W. Kang, H.-K. Choi, Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin, European Journal of Pharmaceutical Sciences 37 (2009) 508-13.

DOI: 10.1016/j.ejps.2009.04.008

Google Scholar

[62] Z. Nasrollahi, S.R. Mohammadi, E. Mollarazi, M.H. Yadegari, Z.M. Hassan, F. Talaei, et al., Functionalized nanoscale β-1,3-glucan to improve Her2+ breast cancer therapy: In vitro and in vivo study, Journal of Controlled Release 202 (2015) 49-56.

DOI: 10.1016/j.jconrel.2015.01.014

Google Scholar

[63] T.K. Upadhyay, N. Fatima, D. Sharma, V. Saravanakumar, R. Sharma, Preparation and characterization of beta-glucan particles containing a payload of nanoembedded rifabutin for enhanced targeted delivery to macrophages, EXCLI J 16 (2017) 210-28.

Google Scholar

[64] C. Wu, B. Chu, L. Kuang, B. Meng, X. Wang, S. Tang, Synthesis of β-1,3-glucan esters showing nanosphere formation, Carbohydrate Polymers 98 (2013) 807-12.

DOI: 10.1016/j.carbpol.2013.06.056

Google Scholar

[65] S. Anusuya, M. Sathiyabama, Preparation of β-d-glucan nanoparticles and its antifungal activity, International Journal of Biological Macromolecules 70 (2014) 440-3.

DOI: 10.1016/j.ijbiomac.2014.07.011

Google Scholar

[66] M. Tukulula, L. Gouveia, P. Paixao, R. Hayeshi, B. Naicker, A. Dube, Functionalization of PLGA Nanoparticles with 1,3-β-glucan Enhances the Intracellular Pharmacokinetics of Rifampicin in Macrophages, Pharmaceutical Research 35 (2018).

DOI: 10.1007/s11095-018-2391-8

Google Scholar

[67] H. Vu-Quang, M. Muthiah, H.J. Lee, Y.-K. Kim, J.H. Rhee, J.-H. Lee, et al., Immune cell-specific delivery of beta-glucan-coated iron oxide nanoparticles for diagnosing liver metastasis by MR imaging, Carbohydrate Polymers 87 (2012) 1159-68.

DOI: 10.1016/j.carbpol.2011.08.091

Google Scholar

[68] M. Agarwal, M.S. Murugan, A. Sharma, R. Rai, A. Kamboj, H. Sharma, et al., Nanoparticles and its Toxic Effects: A Review, International Journal of Current Microbiology and applied sciences 2 (2013) 76-82.

Google Scholar

[69] A. Sukhanova, S. Bozrova, P. Sokolov, M. Berestovoy, A. Karaulov, I. Nabiev, Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties, Nanoscale Research Letters 13 (2018).

DOI: 10.1186/s11671-018-2457-x

Google Scholar

[70] S. Jesus, M. Schmutz, C. Som, G. Borchard, P. Wick, O. Borges, Hazard Assessment of Polymeric Nanobiomaterials for Drug Delivery: What Can We Learn From Literature So Far, Frontiers in Bioengineering and Biotechnology 7 (2019).

DOI: 10.3389/fbioe.2019.00261

Google Scholar

[71] L. Mazzarino, G. Loch-Neckel, L. dos Santos Bubniak, F. Ourique, I. Otsuka, S. Halila, et al., Nanoparticles Made From Xyloglucan-Block-Polycaprolactone Copolymers: Safety Assessment for Drug Delivery, Toxicological Sciences 147 (2015) 104-15.

DOI: 10.1093/toxsci/kfv114

Google Scholar

[72] T. Sandle, 11 - Endotoxin and pyrogen testing, In: Sandle T, editor. Pharmaceutical Microbiology. Oxford, Woodhead Publishing, 2016. pp.131-45.

DOI: 10.1016/b978-0-08-100022-9.00011-6

Google Scholar

[73] M.A. Dobrovolskaia, D.R. Germolec, J.L. Weaver, Evaluation of nanoparticle immunotoxicity, Nature Nanotechnology 4 (2009) 411-4.

DOI: 10.1038/nnano.2009.175

Google Scholar

[74] D. Boraschi, P. Italiani, R. Palomba, P. Decuzzi, A. Duschl, B. Fadeel, et al., Nanoparticles and innate immunity: new perspectives on host defence, Seminars in Immunology 34 (2017) 33-51.

DOI: 10.1016/j.smim.2017.08.013

Google Scholar

[75] T. Sandle, 12 - Sterilization and sterility assurance, In: Sandle T, editor. Pharmaceutical Microbiology. Oxford, Woodhead Publishing, 2016. pp.147-60.

DOI: 10.1016/b978-0-08-100022-9.00012-8

Google Scholar

[76] Q. Jiao, L. Li, Q. Mu, Q. Zhang, Immunomodulation of Nanoparticles in Nanomedicine Applications, BioMed Research International 2014 (2014) 1-19.

DOI: 10.1155/2014/426028

Google Scholar

[77] S. Hussain, J.A.J. Vanoirbeek, P.H.M. Hoet, Interactions of nanomaterials with the immune system, WIREs Nanomedicine and Nanobiotechnology 4 (2011) 169-83.

DOI: 10.1002/wnan.166

Google Scholar

[78] S. Crotty, A brief history of T cell help to B cells, Nature Reviews Immunology 15 (2015) 185-9.

Google Scholar

[79] C.A.J. Janeway, P. Travers, M. Walport, M.J. Shlomchik. Immunobiology: The Immune System in Health and Disease. New York: Garland Science; (2001).

Google Scholar

[80] A.A. Shvedova, V.E. Kagan, B. Fadeel, Close Encounters of the Small Kind: Adverse Effects of Man-Made Materials Interfacing with the Nano-Cosmos of Biological Systems, Annual Review of Pharmacology and Toxicology 50 (2010) 63-88.

DOI: 10.1146/annurev.pharmtox.010909.105819

Google Scholar

[81] M. Schmutz, O. Borges, S. Jesus, G. Borchard, G. Perale, M. Zinn, et al., A Methodological Safe-by-Design Approach for the Development of Nanomedicines, Frontiers in Bioengineering and Biotechnology 8 (2020).

DOI: 10.3389/fbioe.2020.00258

Google Scholar

[82] S. Jesus, N. Bernardi, J. da Silva, M. Colaço, J.o. Panão Costa, P. Fonte, et al., Unravelling the Immunotoxicity of Polycaprolactone Nanoparticles—Effects of Polymer Molecular Weight, Hydrolysis, and Blends, Chemical Research in Toxicology 33 (2020) 2819-33.

DOI: 10.1021/acs.chemrestox.0c00208

Google Scholar

[83] E.S. Abamor, O.A. Tosyali, M. Bagirova, A. Allahverdiyev, Nigella sativa oil entrapped polycaprolactone nanoparticles for leishmaniasis treatment, IET Nanobiotechnology 12 (2018) 1018-26.

DOI: 10.1049/iet-nbt.2018.5115

Google Scholar

[84] J. S, Freeze Dried Chitosan/ Poly-ε-Caprolactone and Poly-ε-Caprolactone Nanoparticles: Evaluation of their Potential as DNA and Antigen Delivery Systems, Journal of Genetic Syndromes & Gene Therapy 4 (2013).

DOI: 10.4172/2157-7412.1000164

Google Scholar

[85] Z. Hong, M. Yu, Z. Chen, W. Guo, J. Wang, Y. Feng, et al., Specifically targeted delivery of protein to phagocytic macrophages, International Journal of Nanomedicine (2015) 1743.

DOI: 10.2147/ijn.s75950

Google Scholar

[86] M.H. Le, H.D. Do, H.H. Tran Thi, L.V. Dung, H.N. Nguyen, H.N. Tran Thi, et al., The dual effect of curcumin nanoparticles encapsulated by 1-3/1-6 β -glucan from medicinal mushrooms Hericium erinaceus and Ganoderma lucidum, Advances in Natural Sciences: Nanoscience and Nanotechnology 7 (2016) 045019.

DOI: 10.1088/2043-6262/7/4/045019

Google Scholar

[87] H. Li, D. Liu, S. Li, C. Xue, Synthesis and cytotoxicity of selenium nanoparticles stabilized by α-D-glucan from Castanea mollissima Blume, International Journal of Biological Macromolecules 129 (2019) 818-26.

DOI: 10.1016/j.ijbiomac.2019.02.085

Google Scholar

[88] J. Singh, S. Pandit, V.W. Bramwell, H.O. Alpar, Diphtheria toxoid loaded poly-(ε-caprolactone) nanoparticles as mucosal vaccine delivery systems, Methods 38 (2006) 96-105.

DOI: 10.1016/j.ymeth.2005.11.003

Google Scholar

[89] V.G. Reshma, P.V. Mohanan, Assessment of Immunotoxicity and Oxidative Stress Induced by Zinc Selenium/Zinc Sulphide Quantum Dots, Frontiers in Nanotechnology 2 (2021).

DOI: 10.3389/fnano.2020.597382

Google Scholar

[90] K. Baert, B. De Geest, H. De Greve, B. Devriendt, E. Cox, Duality of β-glucan microparticles: antigen carrier and immunostimulants, International Journal of Nanomedicine (2016) 2463.

DOI: 10.2147/ijn.s101881

Google Scholar

[91] M.A. Dobrovolskaia, S.E. McNeil, Immunological properties of engineered nanomaterials, Nature Nanotechnology 2 (2007) 469-78.

DOI: 10.1038/nnano.2007.223

Google Scholar

[92] M.A. Dobrovolskaia, Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: Challenges, considerations and strategy, Journal of Controlled Release 220 (2015) 571-83.

DOI: 10.1016/j.jconrel.2015.08.056

Google Scholar

[93] S. Đorđević, M.M. Gonzalez, I. Conejos-Sánchez, B. Carreira, S. Pozzi, R.C. Acúrcio, et al., Current hurdles to the translation of nanomedicines from bench to the clinic, Drug Delivery and Translational Research 12 (2021) 500-25.

DOI: 10.1007/s13346-021-01024-2

Google Scholar

[94] M. Schmutz, O. Borges, S. Jesus, G. Borchard, G. Perale, M. Zinn, et al., A methodological safe-by-design approach for the development of nanomedicines, Frontiers in Bioengineering and Biotechnology 8 (2020) 258.

DOI: 10.3389/fbioe.2020.00258

Google Scholar

[95] S. Hua, M.B.C. de Matos, J.M. Metselaar, G. Storm, Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization, Frontiers in Pharmacology 9 (2018).

DOI: 10.3389/fphar.2018.00790

Google Scholar

[96] M.C. Operti, A. Bernhardt, S. Grimm, A. Engel, C.G. Figdor, O. Tagit, PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up, International Journal of Pharmaceutics 605 (2021) 120807.

DOI: 10.1016/j.ijpharm.2021.120807

Google Scholar