Investigation of Physochimechal and Biological Properties of Composite Sodium Alginate for Tissue Engineering

Article Preview

Abstract:

The current study involves synthesis of a composite films of sodium alginate (Alg), polyvinylalcohol and NanoGraphene oxide (GO) for tissue engineering applications. Solvent casting was used to make the polymeric composite films (Alg-Pva-Go), which may exhibit a synergic activity of the components for tissue repair. The influence of various GO concentrations on the films properties was also investigated. The scaffold has outstanding physicochemical and biological properties. The composite film's high swelling degree and contact angle reveals its high hydrophilicity, making it appropriate for tissue engineering. The antimicrobial activity on Staphylococcus aureus were studied. Furthermore, the antimicrobial test showed that the films composite was resistant to S. aureus. Seeding (AD-MSC) cells into the composite films exhibited an increase in cell adhesion and proliferation when compared to the Alginate and Polyvinylalcohol film in vitro experiments, indicating that the GO has a good influence on the films characteristics, which can utilization in tissue engineering applications.

You might also be interested in these eBooks

Info:

Pages:

11-20

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. I. Correia, H. Pereira,J. Silva-Correia, C.N. Van Dijk, J. Espregueira-Mendes, J. M. Oliveira, and R. L. Reis, Current concepts: tissue Engineering and regenerative medicine applications in the ankle joinc , journal of the royal society interface, 11(2014) 20130784.

DOI: 10.1098/rsif.2013.0784

Google Scholar

[2] C. Pagano, L. Rebaioli1, F. Baldi), and Irene Fassi, Mechanical Behavior of Scaffold-Like Structures: Research of Relationships between Properties and Geometry, AIP Conference Proceedings (2020), https://doi.org/10.1063/1.5142979.

DOI: 10.1063/1.5142979

Google Scholar

[3] N. Chantarapanich, P. Puttawibul, S. Sucharitpwatsku, P. Jeamwatthanachai,S. Inglam, and K. Sitthiseripratip , Scaffold library for tissue Engineering a geometric evaluation, Computational and Mathematical Methods in Medicine, (2012)14,https://doi.org/10.1155/2012/407805.

DOI: 10.1155/2012/407805

Google Scholar

[4] O. Janouskov, Synthetic Polymer Scaffolds for Soft Tissue Engineering, Physiol. Res. 67 (2018) 335-348.

Google Scholar

[5] M. Mazlama , N. Kamalaldinb , Q. Onga , B. Yahyab and A. Nurazreen, Effect of alginate on the properties of hydroxyapatite scaffold and cell migration assay study, Materials Today: Proceedings, 17 (2019) 820–828.

DOI: 10.1016/j.matpr.2019.06.368

Google Scholar

[6] F. Donnaloja , E.Jacchetti , M. Soncini and M. Raimondi, Natural and Synthetic Polymers for Bone Scaffolds Optimization, Polymers,12 (2020) 905.

DOI: 10.3390/polym12040905

Google Scholar

[7] S. Mohammadi, S. Ramakrishna, S. Laurent, M. Shokrgozar, D. Semnani, D.Sadeghi, Sh.Bonakdar, M. Akbari, Fabrication of Nanofibrous PVA/Alginate-Sulfate Substrates for Growth Factor Delivery, Society for Biomaterials, (2018),.

DOI: 10.1002/jbm.a.36552

Google Scholar

[8] S. Barbon, M. Contran, E. Stocco, S. Todros, V. Macchi, R. De Caro and A. Porzionato, Enhanced Biomechanical Properties of Polyvinyl Alcohol-Based Hybrid Scaffolds for Cartilage Tissue Engineering, Processes 9(2021)730.

DOI: 10.3390/pr9050730

Google Scholar

[9] Y. Chen, J. Song, S. Wang,and W. Liu, PVA-Based Hydrogels: Promising Candidates for Articular Cartilage Repair, Macromol. Biosci. (2021) 2100147.

DOI: 10.1002/mabi.202100147

Google Scholar

[10] Sh. Purohit, R. Bhaskar, H. Singh, I. Yadav, M. Gupta, N. Mishra ,Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering,.Int. J. Bio. Macromol. 133(2019) 592–602.

DOI: 10.1016/j.ijbiomac.2019.04.113

Google Scholar

[11] A. Kumar, K. Rao, S. Han, Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohydr. Polymer. 193 (2018)228–238.

DOI: 10.1016/j.carbpol.2018.04.004

Google Scholar

[12] Z. Hu, P. Hong, M. Liao, S. Kong, N. Huang, Ch. Ou, S. Li, Preparation and Characterization of Chitosan-Agarose Composite Films, Materials,9(2016)816. [13]Sh. Chen, Y. Hao, W. Cui, J. Chang, Y. Zhou, Biodegradable electrospun PLLA/chitosan membrane as guided tissue regeneration membrane for treating periodontitis, J Mater Sci, 48 (2013) 6567–6577.

DOI: 10.1007/s10853-013-7453-z

Google Scholar

[14] M.S.M. Eldin, E.A. Kamoun, E.S. Kenawy, T.M. Tamer, M.A. El-meligy, Poly vinyl alcohol) -alginate physically crosslinked hydrogel membranes for wound, Arab. J. Chem. 1 (2013) 38–47.

DOI: 10.1016/j.arabjc.2013.12.003

Google Scholar

[15] S. Cesur, F. Nuzhet Oktar, N. Ekren, O. Kilic, D. Bilgic Alkaya, S. Seyhan, Z. Ruya Ege, Ch. Lin, S. Kuruca, G. Erdemir, O. Gunduz, Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application, Journal of the Australian Ceramic Society, (2019), 10.1007/s41779-019-00363-1.

DOI: 10.1007/s41779-019-00363-1

Google Scholar

[16] K.T. Shalumon, K.H. Anulekha, Sreeja V. Nair, S.V. Nair , K.P. Chennazhi, R. Jayakumar, Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings, International Journal of Biological Macromolecules, 49 (2011) 247–254.

DOI: 10.1016/j.ijbiomac.2011.04.005

Google Scholar

[17] H. Zheng, J. Yang,S. Han,The synthesis and characteristics of sodium alginate/graphene oxide composite films crosslinked with multivalent cations, J. Appl. Polym. Sci. 133(2016) 43616.

DOI: 10.1002/app.43616

Google Scholar

[18] A. Serrano-Aroca , L. Deb ,Green synthetic routes to alginate-graphene oxide composite hydrogels with enhanced physical properties for bioengineering applications, Eur. Polym. J. 103(2018) 198–206.

DOI: 10.1016/j.eurpolymj.2018.04.015

Google Scholar

[19] Sh. Bibi, S. Mir, W. Rehman , F. Menaa , A. Gul , F. Alaryani , Al. Alqahtani , S. Haq and M. Abdellatif ,Synthesis and In Vitro/Ex Vivo Characterizations of Ceftriaxone-Loaded Sodium Alginate/poly(vinyl alcohol) Clay Reinforced Nanocomposites: Possible Applications in Wound Healing, Materials 15(2022) 3885.

DOI: 10.3390/ma15113885

Google Scholar

[20] Ch. Kim, M. Khil, H. Kim, H. Lee, K. Jahng, An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation, J. Biomed. Mater. Res. - Part B Appl. Biomater. 78(2006) 283–290.

DOI: 10.1002/jbm.b.30484

Google Scholar

[21] A. Firoozabady , A. Aidun , R. Kowsari-Esfahan , A. Allahyari , Characterization and Evaluation of Graphene Oxide Incorporated into Nanofibrous Scaffold for Bone Tissue Engineering, Journal of Tissues and Materials, 1(2019)1-13.

Google Scholar

[22] M. Fan, M. Gong, L. Da, L. Bai, X. Chen, J. Li-Ling, Z.Yang, H. Xie, Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers, Biomed. Mater. 9 (2014).

DOI: 10.1088/1748-6041/9/1/015012

Google Scholar

[23] Sh. Purohit, R. Bhaskar, H. Singh, I. Yadav, M. Gupta, N. Mishra, Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering ,International Journal of Biological Macromolecules, 2019, https://doi.org/10.1016/j.ijbiomac.2019.04.113.

DOI: 10.1016/j.ijbiomac.2019.04.113

Google Scholar

[24] I.A. Kadhim, Biocompatibility of Alginate-Graphene Oxide Film for Tissue Engineering Applications, Key Engineering Materials,900(2021).

DOI: 10.4028/www.scientific.net/kem.900.26

Google Scholar