Novel Carbidopa Functionalised Silver Nanoparticles a Selective Detection for Lead and Levodopa

Article Preview

Abstract:

Novel approaches to engineer nanoparticles with desired chemical characteristics open new opportunities to utilize such materials for assorted applications. In this context, various methods have been developed to prepare metal nanoparticles. In the present work, we report a single-step synthesis method to prepare silver nanoparticles by using Carbidopa which is useful in treating Parkinson's disease to increase the dopamine level of the brain. Here we used the Carbidopa drug as a capping agent. Nanoparticles were characterized by Uv-Visible spectroscopy, Particle size Analyzer (PSA), dynamic light scattering (DLS), Powder X-ray Diffractometry (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Transmission electron microscopy (TEM). Then amino acid detection study was performed with all 24 amino acids, which provides the successful data for sensing the amino acid L-dopa. These prepared nanoparticles were further applied for metal analyte studies which reveal that lead can be sensed successfully by using these nanoparticles. Nanoparticle also shows radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH).

You might also be interested in these eBooks

Info:

Pages:

21-38

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.E. Millstone, S.J. Hurst, G.S. Métraux, J.I. Cutler, C.A. Mirkin, Colloidal gold and silver triangular nanoprisms, small 5(6) (2009) 646-664.

DOI: 10.1002/smll.200801480

Google Scholar

[2] S.H. Lee, J.H. Sung, T.H. Park, Nanomaterial-based biosensor as an emerging tool for biomedical applications, Annals of biomedical engineering 40(6) (2012) 1384-1397.

DOI: 10.1007/s10439-011-0457-4

Google Scholar

[3] S.H. Lee, W.-Y. Rho, S.J. Park, J. Kim, O.S. Kwon, B.-H. Jun, Multifunctional self-assembled monolayers via microcontact printing and degas-driven flow guided patterning, Scientific reports 8(1) (2018) 1-8.

DOI: 10.1038/s41598-018-35195-9

Google Scholar

[4] A. Shukla, B.A. Makwana, Facile synthesis of silver nanoparticle and their potential application, Am J Nanosci Nanotechnol 2(4) (2014) 84-92.

Google Scholar

[5] H.A. El‐Shekheby, A.H. Mangood, S.M. Hamza, A.S. Al‐Kady, E.Z.M. Ebeid, A highly efficient and selective turn‐on fluorescent sensor for Hg2+, Ag+ and Ag nanoparticles based on a coumarin dithioate derivative, Luminescence 29(2) (2014) 158-167.

DOI: 10.1002/bio.2521

Google Scholar

[6] M. Behravan, A.H. Panahi, A. Naghizadeh, M. Ziaee, R. Mahdavi, A. Mirzapour, Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity, International journal of biological macromolecules 124 (2019) 148-154.

DOI: 10.1016/j.ijbiomac.2018.11.101

Google Scholar

[7] A. Niaz, A. Bibi, M.I. Zaman, M. Khan, A. Rahim, Highly selective and ecofriendly colourimetric method for the detection of iodide using green tea synthesized silver nanoparticles, Journal of Molecular Liquids 249 (2018) 1047-1051.

DOI: 10.1016/j.molliq.2017.11.151

Google Scholar

[8] B.A. Makwana, D.J. Vyas, K.D. Bhatt, V.K. Jain, Y.K. Agrawal, Highly stable antibacterial silver nanoparticles as selective fluorescent sensor for Fe3+ ions, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 134 (2015) 73-80.

DOI: 10.1016/j.saa.2014.05.044

Google Scholar

[9] Y.-M. Sung, S.-P. Wu, Highly selective and sensitive colourimetric detection of Ag (I) using N-1-(2-mercaptoethyl) adenine functionalized gold nanoparticles, Sensors and Actuators B: Chemical 197 (2014) 172-176.

DOI: 10.1016/j.snb.2014.02.044

Google Scholar

[10] A.D. McFarland, R.P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity, Nano letters 3(8) (2003) 1057-1062.

DOI: 10.1021/nl034372s

Google Scholar

[11] T. Klaus-Joerger, R. Joerger, E. Olsson, C.-G. Granqvist, Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science, TRENDS in Biotechnology 19(1) (2001) 15-20.

DOI: 10.1016/s0167-7799(00)01514-6

Google Scholar

[12] F.Ö. Küp, S. Çoşkunçay, F. Duman, Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities, Materials Science and Engineering: C 107 (2020) 110207.

DOI: 10.1016/j.msec.2019.110207

Google Scholar

[13] L. Rodriguez-Sanchez, M. Blanco, M. Lopez-Quintela, Electrochemical synthesis of silver nanoparticles, The Journal of Physical Chemistry B 104(41) (2000) 9683-9688.

DOI: 10.1021/jp001761r

Google Scholar

[14] M.T. Alula, P. Lemmens, L. Bo, D. Wulferding, J. Yang, H. Spende, Preparation of silver nanoparticles coated ZnO/Fe3O4 composites using chemical reduction method for sensitive detection of uric acid via surface-enhanced Raman spectroscopy, Analytica chimica acta 1073 (2019) 62-71.

DOI: 10.1016/j.aca.2019.04.061

Google Scholar

[15] P. Lee, D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols, The Journal of Physical Chemistry 86(17) (1982) 3391-3395.

DOI: 10.1021/j100214a025

Google Scholar

[16] I. Srnová-Šloufová, F. Lednický, A. Gemperle, J. Gemperlová, Core− shell (Ag) Au bimetallic nanoparticles: Analysis of transmission electron microscopy images, Langmuir 16(25) (2000) 9928-9935.

DOI: 10.1021/la0009588

Google Scholar

[17] U. Nickel, A. zu Castell, K. Pöppl, S. Schneider, A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy, Langmuir 16(23) (2000) 9087-9091.

DOI: 10.1021/la000536y

Google Scholar

[18] B. Chefetz, L. Sominski, M. Pinchas, T. Ginsburg, S. Elmachliy, E. Tel-Or, A. Gedanken, New approach for the removal of metal ions from water: Adsorption onto aquatic plants and microwave reaction for the fabrication of nanometals, The Journal of Physical Chemistry B 109(32) (2005) 15179-15181.

DOI: 10.1021/jp052844g

Google Scholar

[19] A. Pal, S. Shah, S. Devi, Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent, Materials Chemistry and Physics 114(2-3) (2009) 530-532.

DOI: 10.1016/j.matchemphys.2008.11.056

Google Scholar

[20] M. Temgire, S. Joshi, Optical and structural studies of silver nanoparticles, Radiation Physics and Chemistry 71(5) (2004) 1039-1044.

DOI: 10.1016/j.radphyschem.2003.10.016

Google Scholar

[21] H.S. Shin, H.J. Yang, S.B. Kim, M.S. Lee, Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution, Journal of colloid and interface science 274(1) (2004) 89-94.

DOI: 10.1016/j.jcis.2004.02.084

Google Scholar

[22] G.-J. Lee, S.-I. Shin, Y.-C. Kim, S.-G. Oh, Preparation of silver nanorods through the control of temperature and pH of reaction medium, Materials Chemistry and Physics 84(2-3) (2004) 197-204.

DOI: 10.1016/j.matchemphys.2003.11.024

Google Scholar

[23] S. Navaladian, B. Viswanathan, R. Viswanath, T. Varadarajan, Thermal decomposition as route for silver nanoparticles, Nanoscale research letters 2(1) (2007) 44-48.

DOI: 10.1007/s11671-006-9028-2

Google Scholar

[24] V. Tharmaraj, K. Pitchumani, A highly selective ratiometric fluorescent chemosensor for Cu (II) based on dansyl-functionalized thiol stabilized silver nanoparticles, Journal of Materials Chemistry B 1(14) (2013) 1962-1967.

DOI: 10.1039/c3tb00534h

Google Scholar

[25] N. Kaur, S. Kaur, A. Kaur, P. Saluja, H. Sharma, A. Saini, N. Dhariwal, A. Singh, N. Singh, Nanoparticle-based, organic receptor coupled fluorescent chemosensors for the determination of phosphate, Journal of luminescence 145 (2014) 175-179.

DOI: 10.1016/j.jlumin.2013.06.047

Google Scholar

[26] I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, Journal of colloid and interface science 275(1) (2004) 177-182.

DOI: 10.1016/j.jcis.2004.02.012

Google Scholar

[27] H.S. Jung, P. Verwilst, A. Sharma, J. Shin, J.L. Sessler, J.S. Kim, Organic molecule-based photothermal agents: an expanding photothermal therapy universe, Chemical Society Reviews 47(7) (2018) 2280-2297.

DOI: 10.1039/c7cs00522a

Google Scholar

[28] K.D. Bhatt, D.J. Vyas, B.A. Makwana, S.M. Darjee, V.K. Jain, H. Shah, Turn-on fluorescence probe for selective detection of Hg (II) by calixpyrrole hydrazide reduced silver nanoparticle: Application to real water sample, Chinese Chemical Letters 27(5) (2016) 731-737.

DOI: 10.1016/j.cclet.2016.01.012

Google Scholar

[29] B.A.M.S.D. Vinod, K. Jain, A Comparative Study: Metal Nanoparticles as Fluorescent Sensors for Biomolecules and Their Biomedical Application, (2017).

Google Scholar

[30] B.A. Makwana, D.J. Vyas, K.D. Bhatt, S. Darji, V.K. Jain, Novel fluorescent silver nanoparticles: sensitive and selective turn off sensor for cadmium ions, Applied Nanoscience 6(4) (2016) 555-566.

DOI: 10.1007/s13204-015-0459-x

Google Scholar

[31] T. Sharif, A. Niaz, M. Najeeb, M.I. Zaman, M. Ihsan, Isonicotinic acid hydrazide-based silver nanoparticles as simple colourimetric sensor for the detection of Cr3+, Sensors and Actuators B: Chemical 216 (2015) 402-408.

DOI: 10.1016/j.snb.2015.04.043

Google Scholar

[32] E. Amato, Y.A. Diaz-Fernandez, A. Taglietti, P. Pallavicini, L. Pasotti, L. Cucca, C. Milanese, P. Grisoli, C. Dacarro, J.M. Fernandez-Hechavarria, Synthesis, characterization and antibacterial activity against gram positive and gram negative bacteria of biomimetically coated silver nanoparticles, Langmuir 27(15) (2011) 9165-9173.

DOI: 10.1021/la201200r

Google Scholar

[33] A. Taglietti, Y.A.D. Fernandez, P. Galinetto, P. Grisoli, C. Milanese, P. Pallavicini, Mixing thiols on the surface of silver nanoparticles: preserving antibacterial properties while introducing SERS activity, Journal of nanoparticle research 15(11) (2013) (2047).

DOI: 10.1007/s11051-013-2047-x

Google Scholar

[34] H. Saravaia, H. Gupta, P. Popat, P. Sodha, V. Kulshrestha, Single-step synthesis of magnesium-doped lithium manganese oxide nanosorbent and their polymer composite beads for selective heavy metal removal, ACS applied materials & interfaces 10(50) (2018) 44059-44070.

DOI: 10.1021/acsami.8b17141

Google Scholar

[35] N. Vasimalai, S.A. John, Ultrasensitive and selective spectrofluorimetric determination of Hg (II) using a dimercaptothiadiazole fluorophore, Journal of luminescence 131(12) (2011) 2636-2641.

DOI: 10.1016/j.jlumin.2011.06.033

Google Scholar

[36] K. Shrivas, B. Sahu, M.K. Deb, S.S. Thakur, S. Sahu, R. Kurrey, T. Kant, T.K. Patle, R. Jangde, Colourimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach, Microchemical Journal 150 (2019) 104156.

DOI: 10.1016/j.microc.2019.104156

Google Scholar

[37] M. Zhou, L. Han, D. Deng, Z. Zhang, H. He, L. Zhang, L. Luo, 4-mercaptobenzoic acid modified silver nanoparticles-enhanced electrochemical sensor for highly sensitive detection of Cu2+, Sensors and Actuators B: Chemical 291 (2019) 164-169.

DOI: 10.1016/j.snb.2019.04.060

Google Scholar

[38] S. Ghosh, J.R. Bhamore, N.I. Malek, Z. Murthy, S.K. Kailasa, Trypsin mediated one-pot reaction for the synthesis of red fluorescent gold nanoclusters: sensing of multiple analytes (carbidopa, dopamine, Cu2+, Co2+ and Hg2+ ions), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 215 (2019) 209-217.

DOI: 10.1016/j.saa.2019.02.078

Google Scholar

[39] F. Haddad, M. Sawalha, Y. Khawaja, A. Najjar, R. Karaman, Dopamine and levodopa prodrugs for the treatment of Parkinson's disease, Molecules 23(1) (2018) 40.

DOI: 10.3390/molecules23010040

Google Scholar

[40] S.M. Hoy, Levodopa/Carbidopa Enteral Suspension: A Review in Advanced Parkinson's Disease, Drugs 79(15) (2019) 1709-1718.

DOI: 10.1007/s40265-019-01201-1

Google Scholar

[41] S. Ovallath, B. Sulthana, Levodopa: History and therapeutic applications, Annals of Indian Academy of Neurology 20(3) (2017) 185.

Google Scholar

[42] C. Ramamurthy, M. Padma, R. Mareeswaran, A. Suyavaran, M.S. Kumar, K. Premkumar, C. Thirunavukkarasu, The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties, Colloids and surfaces B: Biointerfaces 102 (2013) 808-815.

DOI: 10.1016/j.colsurfb.2012.09.025

Google Scholar

[43] M. Hamelian, M.M. Zangeneh, A. Amisama, K. Varmira, H. Veisi, Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects, Applied Organometallic Chemistry 32(9) (2018) e4458.

DOI: 10.1002/aoc.4458

Google Scholar

[44] J. Singh, A.S. Dhaliwal, Novel green synthesis and characterization of the antioxidant activity of silver nanoparticles prepared from Nepeta leucophylla root extract, Analytical Letters 52(2) (2019) 213-230.

DOI: 10.1080/00032719.2018.1454936

Google Scholar

[45] S. Valsalam, P. Agastian, M.V. Arasu, N.A. Al-Dhabi, A.-K.M. Ghilan, K. Kaviyarasu, B. Ravindran, S.W. Chang, S. Arokiyaraj, Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties, Journal of Photochemistry and Photobiology B: Biology 191 (2019) 65-74.

DOI: 10.1016/j.jphotobiol.2018.12.010

Google Scholar

[46] B.A. Makwana, D.J. Vyas, K.D. Bhatt, V.K. Jain, Selective sensing of copper (II) and leucine using fluorescent turn on–off mechanism from calix [4] resorcinarene modified gold nanoparticles, Sensors and Actuators B: Chemical 240 (2017) 278-287.

DOI: 10.1016/j.snb.2016.08.128

Google Scholar

[47] B.A. Makwana, S. Darjee, V.K. Jain, A. Kongor, G. Sindhav, M.V. Rao, A comparative study: Metal nanoparticles as fluorescent sensors for biomolecules and their biomedical application, Sensors and Actuators B: Chemical 246 (2017) 686-695.

DOI: 10.1016/j.snb.2017.02.054

Google Scholar

[48] A.V. Samrot, N. Shobana, R. Jenna, Antibacterial and antioxidant activity of different staged ripened fruit of Capsicum annuum and its green synthesized silver nanoparticles, BioNanoScience 8(2) (2018) 632-646.

DOI: 10.1007/s12668-018-0521-8

Google Scholar

[49] A. Kongor, M. Panchal, M. Athar, B. Makwana, G. Sindhav, P. Jha, V. Jain, Synthesis and modeling of calix [4] pyrrole wrapped Au nanoprobe for specific detection of Pb (II): Antioxidant and radical scavenging efficiencies, Journal of Photochemistry and Photobiology A: Chemistry 364 (2018) 801-810.

DOI: 10.1016/j.jphotochem.2018.07.024

Google Scholar