[1]
J.E. Millstone, S.J. Hurst, G.S. Métraux, J.I. Cutler, C.A. Mirkin, Colloidal gold and silver triangular nanoprisms, small 5(6) (2009) 646-664.
DOI: 10.1002/smll.200801480
Google Scholar
[2]
S.H. Lee, J.H. Sung, T.H. Park, Nanomaterial-based biosensor as an emerging tool for biomedical applications, Annals of biomedical engineering 40(6) (2012) 1384-1397.
DOI: 10.1007/s10439-011-0457-4
Google Scholar
[3]
S.H. Lee, W.-Y. Rho, S.J. Park, J. Kim, O.S. Kwon, B.-H. Jun, Multifunctional self-assembled monolayers via microcontact printing and degas-driven flow guided patterning, Scientific reports 8(1) (2018) 1-8.
DOI: 10.1038/s41598-018-35195-9
Google Scholar
[4]
A. Shukla, B.A. Makwana, Facile synthesis of silver nanoparticle and their potential application, Am J Nanosci Nanotechnol 2(4) (2014) 84-92.
Google Scholar
[5]
H.A. El‐Shekheby, A.H. Mangood, S.M. Hamza, A.S. Al‐Kady, E.Z.M. Ebeid, A highly efficient and selective turn‐on fluorescent sensor for Hg2+, Ag+ and Ag nanoparticles based on a coumarin dithioate derivative, Luminescence 29(2) (2014) 158-167.
DOI: 10.1002/bio.2521
Google Scholar
[6]
M. Behravan, A.H. Panahi, A. Naghizadeh, M. Ziaee, R. Mahdavi, A. Mirzapour, Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity, International journal of biological macromolecules 124 (2019) 148-154.
DOI: 10.1016/j.ijbiomac.2018.11.101
Google Scholar
[7]
A. Niaz, A. Bibi, M.I. Zaman, M. Khan, A. Rahim, Highly selective and ecofriendly colourimetric method for the detection of iodide using green tea synthesized silver nanoparticles, Journal of Molecular Liquids 249 (2018) 1047-1051.
DOI: 10.1016/j.molliq.2017.11.151
Google Scholar
[8]
B.A. Makwana, D.J. Vyas, K.D. Bhatt, V.K. Jain, Y.K. Agrawal, Highly stable antibacterial silver nanoparticles as selective fluorescent sensor for Fe3+ ions, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 134 (2015) 73-80.
DOI: 10.1016/j.saa.2014.05.044
Google Scholar
[9]
Y.-M. Sung, S.-P. Wu, Highly selective and sensitive colourimetric detection of Ag (I) using N-1-(2-mercaptoethyl) adenine functionalized gold nanoparticles, Sensors and Actuators B: Chemical 197 (2014) 172-176.
DOI: 10.1016/j.snb.2014.02.044
Google Scholar
[10]
A.D. McFarland, R.P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity, Nano letters 3(8) (2003) 1057-1062.
DOI: 10.1021/nl034372s
Google Scholar
[11]
T. Klaus-Joerger, R. Joerger, E. Olsson, C.-G. Granqvist, Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science, TRENDS in Biotechnology 19(1) (2001) 15-20.
DOI: 10.1016/s0167-7799(00)01514-6
Google Scholar
[12]
F.Ö. Küp, S. Çoşkunçay, F. Duman, Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities, Materials Science and Engineering: C 107 (2020) 110207.
DOI: 10.1016/j.msec.2019.110207
Google Scholar
[13]
L. Rodriguez-Sanchez, M. Blanco, M. Lopez-Quintela, Electrochemical synthesis of silver nanoparticles, The Journal of Physical Chemistry B 104(41) (2000) 9683-9688.
DOI: 10.1021/jp001761r
Google Scholar
[14]
M.T. Alula, P. Lemmens, L. Bo, D. Wulferding, J. Yang, H. Spende, Preparation of silver nanoparticles coated ZnO/Fe3O4 composites using chemical reduction method for sensitive detection of uric acid via surface-enhanced Raman spectroscopy, Analytica chimica acta 1073 (2019) 62-71.
DOI: 10.1016/j.aca.2019.04.061
Google Scholar
[15]
P. Lee, D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols, The Journal of Physical Chemistry 86(17) (1982) 3391-3395.
DOI: 10.1021/j100214a025
Google Scholar
[16]
I. Srnová-Šloufová, F. Lednický, A. Gemperle, J. Gemperlová, Core− shell (Ag) Au bimetallic nanoparticles: Analysis of transmission electron microscopy images, Langmuir 16(25) (2000) 9928-9935.
DOI: 10.1021/la0009588
Google Scholar
[17]
U. Nickel, A. zu Castell, K. Pöppl, S. Schneider, A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy, Langmuir 16(23) (2000) 9087-9091.
DOI: 10.1021/la000536y
Google Scholar
[18]
B. Chefetz, L. Sominski, M. Pinchas, T. Ginsburg, S. Elmachliy, E. Tel-Or, A. Gedanken, New approach for the removal of metal ions from water: Adsorption onto aquatic plants and microwave reaction for the fabrication of nanometals, The Journal of Physical Chemistry B 109(32) (2005) 15179-15181.
DOI: 10.1021/jp052844g
Google Scholar
[19]
A. Pal, S. Shah, S. Devi, Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent, Materials Chemistry and Physics 114(2-3) (2009) 530-532.
DOI: 10.1016/j.matchemphys.2008.11.056
Google Scholar
[20]
M. Temgire, S. Joshi, Optical and structural studies of silver nanoparticles, Radiation Physics and Chemistry 71(5) (2004) 1039-1044.
DOI: 10.1016/j.radphyschem.2003.10.016
Google Scholar
[21]
H.S. Shin, H.J. Yang, S.B. Kim, M.S. Lee, Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution, Journal of colloid and interface science 274(1) (2004) 89-94.
DOI: 10.1016/j.jcis.2004.02.084
Google Scholar
[22]
G.-J. Lee, S.-I. Shin, Y.-C. Kim, S.-G. Oh, Preparation of silver nanorods through the control of temperature and pH of reaction medium, Materials Chemistry and Physics 84(2-3) (2004) 197-204.
DOI: 10.1016/j.matchemphys.2003.11.024
Google Scholar
[23]
S. Navaladian, B. Viswanathan, R. Viswanath, T. Varadarajan, Thermal decomposition as route for silver nanoparticles, Nanoscale research letters 2(1) (2007) 44-48.
DOI: 10.1007/s11671-006-9028-2
Google Scholar
[24]
V. Tharmaraj, K. Pitchumani, A highly selective ratiometric fluorescent chemosensor for Cu (II) based on dansyl-functionalized thiol stabilized silver nanoparticles, Journal of Materials Chemistry B 1(14) (2013) 1962-1967.
DOI: 10.1039/c3tb00534h
Google Scholar
[25]
N. Kaur, S. Kaur, A. Kaur, P. Saluja, H. Sharma, A. Saini, N. Dhariwal, A. Singh, N. Singh, Nanoparticle-based, organic receptor coupled fluorescent chemosensors for the determination of phosphate, Journal of luminescence 145 (2014) 175-179.
DOI: 10.1016/j.jlumin.2013.06.047
Google Scholar
[26]
I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, Journal of colloid and interface science 275(1) (2004) 177-182.
DOI: 10.1016/j.jcis.2004.02.012
Google Scholar
[27]
H.S. Jung, P. Verwilst, A. Sharma, J. Shin, J.L. Sessler, J.S. Kim, Organic molecule-based photothermal agents: an expanding photothermal therapy universe, Chemical Society Reviews 47(7) (2018) 2280-2297.
DOI: 10.1039/c7cs00522a
Google Scholar
[28]
K.D. Bhatt, D.J. Vyas, B.A. Makwana, S.M. Darjee, V.K. Jain, H. Shah, Turn-on fluorescence probe for selective detection of Hg (II) by calixpyrrole hydrazide reduced silver nanoparticle: Application to real water sample, Chinese Chemical Letters 27(5) (2016) 731-737.
DOI: 10.1016/j.cclet.2016.01.012
Google Scholar
[29]
B.A.M.S.D. Vinod, K. Jain, A Comparative Study: Metal Nanoparticles as Fluorescent Sensors for Biomolecules and Their Biomedical Application, (2017).
Google Scholar
[30]
B.A. Makwana, D.J. Vyas, K.D. Bhatt, S. Darji, V.K. Jain, Novel fluorescent silver nanoparticles: sensitive and selective turn off sensor for cadmium ions, Applied Nanoscience 6(4) (2016) 555-566.
DOI: 10.1007/s13204-015-0459-x
Google Scholar
[31]
T. Sharif, A. Niaz, M. Najeeb, M.I. Zaman, M. Ihsan, Isonicotinic acid hydrazide-based silver nanoparticles as simple colourimetric sensor for the detection of Cr3+, Sensors and Actuators B: Chemical 216 (2015) 402-408.
DOI: 10.1016/j.snb.2015.04.043
Google Scholar
[32]
E. Amato, Y.A. Diaz-Fernandez, A. Taglietti, P. Pallavicini, L. Pasotti, L. Cucca, C. Milanese, P. Grisoli, C. Dacarro, J.M. Fernandez-Hechavarria, Synthesis, characterization and antibacterial activity against gram positive and gram negative bacteria of biomimetically coated silver nanoparticles, Langmuir 27(15) (2011) 9165-9173.
DOI: 10.1021/la201200r
Google Scholar
[33]
A. Taglietti, Y.A.D. Fernandez, P. Galinetto, P. Grisoli, C. Milanese, P. Pallavicini, Mixing thiols on the surface of silver nanoparticles: preserving antibacterial properties while introducing SERS activity, Journal of nanoparticle research 15(11) (2013) (2047).
DOI: 10.1007/s11051-013-2047-x
Google Scholar
[34]
H. Saravaia, H. Gupta, P. Popat, P. Sodha, V. Kulshrestha, Single-step synthesis of magnesium-doped lithium manganese oxide nanosorbent and their polymer composite beads for selective heavy metal removal, ACS applied materials & interfaces 10(50) (2018) 44059-44070.
DOI: 10.1021/acsami.8b17141
Google Scholar
[35]
N. Vasimalai, S.A. John, Ultrasensitive and selective spectrofluorimetric determination of Hg (II) using a dimercaptothiadiazole fluorophore, Journal of luminescence 131(12) (2011) 2636-2641.
DOI: 10.1016/j.jlumin.2011.06.033
Google Scholar
[36]
K. Shrivas, B. Sahu, M.K. Deb, S.S. Thakur, S. Sahu, R. Kurrey, T. Kant, T.K. Patle, R. Jangde, Colourimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach, Microchemical Journal 150 (2019) 104156.
DOI: 10.1016/j.microc.2019.104156
Google Scholar
[37]
M. Zhou, L. Han, D. Deng, Z. Zhang, H. He, L. Zhang, L. Luo, 4-mercaptobenzoic acid modified silver nanoparticles-enhanced electrochemical sensor for highly sensitive detection of Cu2+, Sensors and Actuators B: Chemical 291 (2019) 164-169.
DOI: 10.1016/j.snb.2019.04.060
Google Scholar
[38]
S. Ghosh, J.R. Bhamore, N.I. Malek, Z. Murthy, S.K. Kailasa, Trypsin mediated one-pot reaction for the synthesis of red fluorescent gold nanoclusters: sensing of multiple analytes (carbidopa, dopamine, Cu2+, Co2+ and Hg2+ ions), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 215 (2019) 209-217.
DOI: 10.1016/j.saa.2019.02.078
Google Scholar
[39]
F. Haddad, M. Sawalha, Y. Khawaja, A. Najjar, R. Karaman, Dopamine and levodopa prodrugs for the treatment of Parkinson's disease, Molecules 23(1) (2018) 40.
DOI: 10.3390/molecules23010040
Google Scholar
[40]
S.M. Hoy, Levodopa/Carbidopa Enteral Suspension: A Review in Advanced Parkinson's Disease, Drugs 79(15) (2019) 1709-1718.
DOI: 10.1007/s40265-019-01201-1
Google Scholar
[41]
S. Ovallath, B. Sulthana, Levodopa: History and therapeutic applications, Annals of Indian Academy of Neurology 20(3) (2017) 185.
Google Scholar
[42]
C. Ramamurthy, M. Padma, R. Mareeswaran, A. Suyavaran, M.S. Kumar, K. Premkumar, C. Thirunavukkarasu, The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties, Colloids and surfaces B: Biointerfaces 102 (2013) 808-815.
DOI: 10.1016/j.colsurfb.2012.09.025
Google Scholar
[43]
M. Hamelian, M.M. Zangeneh, A. Amisama, K. Varmira, H. Veisi, Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects, Applied Organometallic Chemistry 32(9) (2018) e4458.
DOI: 10.1002/aoc.4458
Google Scholar
[44]
J. Singh, A.S. Dhaliwal, Novel green synthesis and characterization of the antioxidant activity of silver nanoparticles prepared from Nepeta leucophylla root extract, Analytical Letters 52(2) (2019) 213-230.
DOI: 10.1080/00032719.2018.1454936
Google Scholar
[45]
S. Valsalam, P. Agastian, M.V. Arasu, N.A. Al-Dhabi, A.-K.M. Ghilan, K. Kaviyarasu, B. Ravindran, S.W. Chang, S. Arokiyaraj, Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties, Journal of Photochemistry and Photobiology B: Biology 191 (2019) 65-74.
DOI: 10.1016/j.jphotobiol.2018.12.010
Google Scholar
[46]
B.A. Makwana, D.J. Vyas, K.D. Bhatt, V.K. Jain, Selective sensing of copper (II) and leucine using fluorescent turn on–off mechanism from calix [4] resorcinarene modified gold nanoparticles, Sensors and Actuators B: Chemical 240 (2017) 278-287.
DOI: 10.1016/j.snb.2016.08.128
Google Scholar
[47]
B.A. Makwana, S. Darjee, V.K. Jain, A. Kongor, G. Sindhav, M.V. Rao, A comparative study: Metal nanoparticles as fluorescent sensors for biomolecules and their biomedical application, Sensors and Actuators B: Chemical 246 (2017) 686-695.
DOI: 10.1016/j.snb.2017.02.054
Google Scholar
[48]
A.V. Samrot, N. Shobana, R. Jenna, Antibacterial and antioxidant activity of different staged ripened fruit of Capsicum annuum and its green synthesized silver nanoparticles, BioNanoScience 8(2) (2018) 632-646.
DOI: 10.1007/s12668-018-0521-8
Google Scholar
[49]
A. Kongor, M. Panchal, M. Athar, B. Makwana, G. Sindhav, P. Jha, V. Jain, Synthesis and modeling of calix [4] pyrrole wrapped Au nanoprobe for specific detection of Pb (II): Antioxidant and radical scavenging efficiencies, Journal of Photochemistry and Photobiology A: Chemistry 364 (2018) 801-810.
DOI: 10.1016/j.jphotochem.2018.07.024
Google Scholar