[1]
Y. Tiebun, L. Feng, and Z. Rongkun, Recent Advances in Radiation Technologies Enabled by Metal-Halide Preovskite,, Mater. Adv., 2021,.
Google Scholar
[2]
B. H. Tonnessen and L. Pounds, Radiation physics,, J. Vasc. Surg., vol. 53, no. 1 SUPPL., pp. 6S-8S, 2011,.
Google Scholar
[3]
N. S. A. Rashid, T. M. Yoshandi, S. S. A. A. Majid, F. Mohamed, and K. K. Siong, The study of equivalent dose of uranium in long bean (V. U. Sesquipedalis) and the effect on human,, AIP Conf. Proc., vol. 1704, no. 1, p.50013, Jan. 2016,.
DOI: 10.1063/1.4940109
Google Scholar
[4]
D. Hamiltom, Diagnostic Nuclear Medicine: A Physics Perspective, vol. 237, no. 1. (2005).
Google Scholar
[5]
K. R. Brown and E. Rzucidlo, Acute and chronic radiation injury,, J. Vasc. Surg., vol. 53, no. 1 SUPPL., pp. 15S-21S, 2011,.
Google Scholar
[6]
M. Donya, M. Radford, A. ElGuindy, D. Firmin, and M. H. Yacoub, Radiation in medicine: Origins, risks and aspirations,, Glob. Cardiol. Sci. Pract., vol. 2014, no. 4, 2014,.
DOI: 10.5339/gcsp.2014.57
Google Scholar
[7]
A. B. Reed, The history of radiation use in medicine,, J. Vasc. Surg., vol. 53, no. 1 SUPPL., pp. 3S-5S, 2011,.
Google Scholar
[8]
T. M. Yoshandi, Y. Saputra, and D. R. Gavilla, PENGENALAN BAHAYA RADIASI DALAM KEHIDUPAN SEHARI - HARI The Introduction of Radiation Hazards in Everyday ' s Life STIKes Awal Bros Pekanbaru ,, Awal Bros J. Community Dev., vol. 1, no. 1, p.16–21, (2020).
DOI: 10.54973/jsabp.v1i1.21
Google Scholar
[9]
A. L. Nicol, B. A. Chung, and H. T. Benzon, Fluoroscopy and Radiation Safety, Fourth Edi. Elsevier, (2018).
Google Scholar
[10]
T. M. Yoshandi, THE FUSION EFFECT OF COMPUTED RADIOGRAPHY IMAGE OF WELDING PLATE DIFFERENT IN POWER TO ITS QUALITY,, J. Renew. Energy Mech., vol. 3, no. 02, p.71–77, 2020,.
DOI: 10.25299/rem.2020.vol3.no02.5225
Google Scholar
[11]
J. Seco, B. Clasie, and M. Partridge, Review on the characteristics of radiation detectors for dosimetry and imaging,, Phys. Med. Biol., vol. 59, no. 20, pp. R303–R347, 2014,.
DOI: 10.1088/0031-9155/59/20/r303
Google Scholar
[12]
J. Troughton and D. Atkinson, Amorphous InGaZnO and metal oxide semiconductor devices: An overview and current status,, J. Mater. Chem. C, vol. 7, no. 40, p.12388–12414, 2019,.
DOI: 10.1039/c9tc03933c
Google Scholar
[13]
R. Sheldon, Definition: Complementary Metal-Oxide Semiconductor (SMOS)., https://www.techtarget.com/whatis/definition/CMOS-complementary-metal-oxide-semiconductor.
DOI: 10.5772/intechopen.73145
Google Scholar
[14]
T. Ito, Research and development of advanced CMOS technologies,, Fujitsu Sci. Tech. J., vol. 39, no. 1, p.3–8, (2003).
Google Scholar
[15]
E. Wagner, R. Sorom, and L. Wiles, Radiation monitoring for the masses,, Health Phys., vol. 110, no. 1, p.37–44, 2016,.
DOI: 10.1097/hp.0000000000000407
Google Scholar
[16]
O. Burggraaff et al., Standardized spectral and radiometric calibration of consumer cameras,, Opt. Express, vol. 27, no. 14, p.19075, 2019,.
DOI: 10.1364/oe.27.019075
Google Scholar
[17]
E. Ozdalga, A. Ozdalga, and N. Ahuja, The smartphone in medicine: A review of current and potential use among physicians and students,, J. Med. Internet Res., vol. 14, no. 5, p.1–14, 2012,.
DOI: 10.2196/jmir.1994
Google Scholar
[18]
R. J. Gove, CMOS image sensor technology advances for mobile devices, 2nd ed. Elsevier Ltd., (2019).
Google Scholar
[19]
O. Van Hoey et al., Radiation dosimetry properties of smartphone CMOS sensors,, Radiat. Prot. Dosimetry, vol. 168, no. 3, p.314–321, 2015,.
DOI: 10.1093/rpd/ncv352
Google Scholar
[20]
S. Tith and N. Chankow, Measurement of Gamma-Rays Using Smartphones,, Open J. Appl. Sci., vol. 06, no. 01, p.31–37, 2016,.
DOI: 10.4236/ojapps.2016.61004
Google Scholar
[21]
S. Alessandri, In the Field Feasibility of a Simple Method to Check for Radioactivity in Commodities and in the Environment,, PLoS Curr., p.1–11, 2017,.
DOI: 10.1371/currents.dis.07059b54a787dcfcf53ac46ab5a6a809
Google Scholar
[22]
A. Mafodda and C. Woda, External dose-rate measurements based on smartphone CMOS sensors,, Radiat. Meas., vol. 137, p.106403, 2020,.
DOI: 10.1016/j.radmeas.2020.106403
Google Scholar
[23]
Y.H. Johary, J. Trapp, A. Aamry, H. Aamri, N. Tamam, and A. Sulieman, The suitability of smartphone camera sensors for detecting radiation,, Sci. Rep., vol. 11, no. 1, p.1–13, 2021,.
DOI: 10.1038/s41598-021-92195-y
Google Scholar
[24]
S. Gröber, A. Molz, and J. Kuhn, Using smartphones and tablet PCs for β--spectroscopy in an educational experimental setup,, Eur. J. Phys., vol. 35, no. 6, 2014,.
DOI: 10.1088/0143-0807/35/6/065001
Google Scholar
[25]
J. Kuhn, A. Molz, S. Gröber, and J. Frübis, iRadioactivity — Possibilities and Limitations for Using Smartphones and Tablet PCs as Radioactive Counters,, Phys. Teach., vol. 52, no. 6, p.351–356, 2014,.
DOI: 10.1119/1.4893089
Google Scholar
[26]
W. Paper, Survey meter measurements of X-ray tube leakage in the loading state,, vol. 1, no. 6, p.1–6, (2020).
Google Scholar
[27]
J. Zira, U. Zikirullahi, I. Garba, M. Sidi, M. Umar, and S. Bature, Assessment of Radiation Leakage from Diagnostic Rooms of Radiology Department of a Teaching Hospital in Kano, Northwestern Nigeria,, J. Nucl. Technol. Appl. Sci., vol. 8, no. 1, p.135–143, 2020,.
DOI: 10.21608/jntas.2020.23942.1018
Google Scholar
[28]
Republic of Indonesia Ministry of Health, KEPMENKES No. 1250/MENKES/SK/XII/2009. Indonesia, (2009).
Google Scholar
[29]
B. Utomo et al., Analysis of Tube Leakage of X-Ray Radiation Using Geiger Muller Sensor Equipped with Data Storage,, Indones. J. Electron. Electromed. Eng. Med. Informatics, vol. 4, no. 2, p.78–84, 2022,.
DOI: 10.35882/ijeeemi.v4i2.5
Google Scholar
[30]
N. Anitha and P. Dr. Srividya, Comparative Study of Different Technologies to Replace CMOS Technology 1 PhD,, (2017).
Google Scholar