Collagen: A Promising Molecule in Biomedical Applications

Article Preview

Abstract:

Collagen has been widely used in biomedical applications, mainly to develop structures (cell scaffolds) that allow cell growth and differentiation processes. This biomolecule is also used in cosmetics because it is an essential ingredient of certain makeup and in pharmaceutics for bandages to treat wounds and burns. However, the use of collagen has been limited by the ethical and moral implications of the (typically animal) sources from which it is extracted. Therefore, alternative, more environmentally friendly sources should be found to obtain collagen. Extracting collagen from fishing industry waste (such as scales, bones, and fish skin) has been presented as an advantageous alternative to obtain this biomaterial, which has also shown promising results due to its biocompatibility with human structures (organs and tissues). The characteristics of this molecule and other sources from which it can be obtained should be further studied.

You might also be interested in these eBooks

Info:

Pages:

11-28

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kim, G. H. Yang, and G. H. Kim, "Three-dimensional gelatin/PVA scaffold with nanofibrillated collagen surface for applications in hard-tissue regeneration," Int. J. Biol. Macromol., vol. 135, p.21–28, 2019.

DOI: 10.1016/j.ijbiomac.2019.05.076

Google Scholar

[2] A. Asanbaeva, K. Masuda, E. J. M. A. Thonar, S. M. Klisch, and R. L. Sah, "Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with β-aminopropionitrile," Osteoarthr. Cartil., vol. 16, no. 1, p.1–11, 2008.

DOI: 10.1016/j.joca.2007.05.019

Google Scholar

[3] Y. Shang et al., "Evaluations of Marine Collagen Peptides from tilapia skin on experimental oral ulcer model of mice," Mater. Today Commun., vol. 26, no. November 2020, p.101893, 2021.

DOI: 10.1016/j.mtcomm.2020.101893

Google Scholar

[4] A. T. Mneimneh and M. M. Mehanna, "Collagen-based scaffolds: An auspicious tool to support repair, recovery, and regeneration post spinal cord injury," Int. J. Pharm., vol. 601, no. April, p.120559, 2021.

DOI: 10.1016/j.ijpharm.2021.120559

Google Scholar

[5] M. Wan et al., "Bioactive Materials Biomaterials from the sea : Future building blocks for biomedical applications," Bioact. Mater., vol. 6, no. 12, p.4255–4285, 2021.

DOI: 10.1016/j.bioactmat.2021.04.028

Google Scholar

[6] K. Gelse, E. Po, and T. Aigner, "Collagens — structure , function , and biosynthesis," Adv. Drug Deliv. Rev., vol. 55, p.1531–1546, 2003.

DOI: 10.1016/j.addr.2003.08.002

Google Scholar

[7] S. Gorgieva and V. Kokol, "Collagen- vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives," Biomater. Appl. Nanomedicine, 2011.

DOI: 10.5772/24118

Google Scholar

[8] E. Song, S. Yeon Kim, T. Chun, H. J. Byun, and Y. M. Lee, "Collagen scaffolds derived from a marine source and their biocompatibility," Biomaterials, vol. 27, no. 15, p.2951–2961, 2006.

DOI: 10.1016/j.biomaterials.2006.01.015

Google Scholar

[9] G. Bou-Gharios and B. De Crombrugghe, "Type I Collagen Structure, Synthesis, and Regulation," Princ. Bone Biol. Two-Volume Set, vol. 1, p.285–318, 2008.

DOI: 10.1016/B978-0-12-373884-4.00034-3

Google Scholar

[10] D. A. Stover and B. C. Verrelli, "Comparative vertebrate evolutionary analyses of type i collagen: Potential of COL1a1 gene structure and intron variation for common bone-related diseases," Mol. Biol. Evol., vol. 28, no. 1, p.533–542, 2011.

DOI: 10.1093/molbev/msq221

Google Scholar

[11] A. Sorushanova et al., "The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development," Adv. Mater., vol. 31, no. 1, p.1–39, 2019.

DOI: 10.1002/adma.201801651

Google Scholar

[12] M. Furtado, L. Chen, Z. Chen, A. Chen, and W. Cui, "Development of fish collagen in tissue regeneration and drug delivery," Eng. Regen., 2022.

DOI: 10.1016/j.engreg.2022.05.002

Google Scholar

[13] L. Salvatore et al., "Materials Science and Engineering C Marine collagen and its derivatives : Versatile and sustainable bio-resources for healthcare," Mater. Sci. Eng. C, vol. 113, no. April, p.110963, 2020.

DOI: 10.1016/j.msec.2020.110963

Google Scholar

[14] T. H. Silva, J. Moreira-Silva, A. L. P. Marques, A. Domingues, Y. Bayon, and R. L. Reis, "Marine origin collagens and its potential applications," Mar. Drugs, vol. 12, no. 12, p.5881–5901, 2014.

DOI: 10.3390/md12125881

Google Scholar

[15] D. E. Birk, J. M. Fitch, J. P. Babiarz, and T. F. Linsenmayer, "Collagen type I and type V are present in the same fibril in the avian corneal stroma," J. Cell Biol., vol. 106, no. 3, p.999–1008, 1988.

DOI: 10.1083/jcb.106.3.999

Google Scholar

[16] L. A. Tziveleka, E. Ioannou, D. Tsiourvas, P. Berillis, E. Foufa, and V. Roussis, "Collagen from the marine sponges Axinella cannabina and Suberites carnosus: Isolation and morphological, biochemical, and biophysical characterization," Mar. Drugs, vol. 15, no. 6, 2017.

DOI: 10.3390/md15060152

Google Scholar

[17] J. R. Antonio, C. R. Antônio, I. L. S. Cardeal, J. M. A. Ballavenuto, and J. R. Oliveira, "Nanotechnology in dermatology," An. Bras. Dermatol., vol. 89, no. 1, p.126–136, 2014.

DOI: 10.1590/abd1806-4841.20142228

Google Scholar

[18] V. de M. Oliveira et al., "Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products," J. Mol. Struct., vol. 1224, 2021.

DOI: 10.1016/j.molstruc.2020.129023

Google Scholar

[19] R. Fleischmajer, E. Douglas MacDonald, J. S. Perlish, R. E. Burgeson, and L. W. Fisher, "Dermal collagen fibrils are hybrids of type I and type III collagen molecules," J. Struct. Biol., vol. 105, no. 1–3, p.162–169, 1990.

DOI: 10.1016/1047-8477(90)90110-X

Google Scholar

[20] K. von der Mark, "Structure, Biosynthesis and Gene Regulation of Collagens in Cartilage and Bone," Dyn. Bone Cartil. Metab., p.3–40, 2006.

DOI: 10.1016/B978-012088562-6/50002-9

Google Scholar

[21] K. Von Der Mark, Localization of collagen types in tissues, vol. Vol. 9. ACADEMIC PRESS, INC., 1981.

Google Scholar

[22] H. Sawada, H. Konomi, and K. Hirosawa, "Characterization of the collagen in the hexagonal lattice of Descemet's membrane: Its relation to type VIII collagen," J. Cell Biol., vol. 110, no. 1, p.219–227, 1990.

DOI: 10.1083/jcb.110.1.219

Google Scholar

[23] L.-J. Yan et al., "Type I collagen from sea cucumber (Stichopus japonicus) and the role of matrix metalloproteinase-2 in autolysis," Food Biosci., vol. 41, no. February, p.100959, 2021.

DOI: 10.1016/j.fbio.2021.100959

Google Scholar

[24] C. Tang et al., "Collagen and its derivatives: From structure and properties to their applications in food industry," Food Hydrocoll., p.107748, 2022.

DOI: 10.1016/j.foodhyd.2022.107748

Google Scholar

[25] M. Yan, B. Li, X. Zhao, and S. Qin, "Effect of concentration, pH and ionic strength on the kinetic self-assembly of acid-soluble collagen from walleye pollock (Theragra chalcogramma) skin," Food Hydrocoll., vol. 29, no. 1, p.199–204, 2012.

DOI: 10.1016/j.foodhyd.2012.02.014

Google Scholar

[26] S. Zhu et al., "Self-assembly of collagen-based biomaterials: Preparation, characterizations and biomedical applications," J. Mater. Chem. B, vol. 6, no. 18, p.2650–2676, 2018.

DOI: 10.1039/c7tb02999c

Google Scholar

[27] K. Adamiak and A. Sionkowska, "Current methods of collagen cross-linking: Review," Int. J. Biol. Macromol., vol. 161, p.550–560, 2020.

DOI: 10.1016/j.ijbiomac.2020.06.075

Google Scholar

[28] M. C. Gomez-Guillen, B. Gimenez, M. E. Lopez-Caballero, and M. P. Montero, "Functional and bioactive properties of collagen and gelatin from alternative sources: A review," Food Hydrocoll., vol. 25, no. 8, p.1813–1827, 2011.

DOI: 10.1016/j.foodhyd.2011.02.007

Google Scholar

[29] C. C. Tan, A. A. Karim, U. Uthumporn, and F. C. Ghazali, "Effect extraction temperature on the emulsifying properties of gelatin from black tilapia (Oreochromis mossambicus) skin," Food Hydrocoll., vol. 108, no. May, p.106024, 2020.

DOI: 10.1016/j.foodhyd.2020.106024

Google Scholar

[30] W. G. Jin et al., "Characterization and Functional Properties of Gelatin Extracted from Chinese Giant Salamander (Andrias Davidianus) Skin," J. Aquat. Food Prod. Technol., vol. 28, no. 8, p.861–876, 2019.

DOI: 10.1080/10498850.2019.1652716

Google Scholar

[31] J. Xu, F. Liu, H. D. Goff, and F. Zhong, "Effect of pre-treatment temperatures on the film-forming properties of collagen fiber dispersions," Food Hydrocoll., vol. 107, no. July 2019, 2020.

DOI: 10.1016/j.foodhyd.2019.105326

Google Scholar

[32] Y. Ma et al., "A top-down approach to improve collagen film's performance: The comparisons of macro, micro and nano sized fibers," Food Chem., vol. 309, no. September 2019, p.125624, 2020.

DOI: 10.1016/j.foodchem.2019.125624

Google Scholar

[33] Y. Song et al., "Identification and antioxidant activity of bovine bone collagen-derived novel peptides prepared by recombinant collagenase from Bacillus cereus," Food Chem., vol. 349, no. February, p.129143, 2021.

DOI: 10.1016/j.foodchem.2021.129143

Google Scholar

[34] X. Chen, J. Wu, X. Cai, and S. Wang, "Production, structure–function relationships, mechanisms, and applications of antifreeze peptides," Compr. Rev. Food Sci. Food Saf., vol. 20, no. 1, p.542–562, 2021.

DOI: 10.1111/1541-4337.12655

Google Scholar

[35] A. Karami, H. Tebyanian, R. Sayyad Soufdoost, E. Motavallian, A. Barkhordari, and M. R. Nourani, "Extraction and Characterization of Collagen with Cost-Effective Method from Human Placenta for Biomedical Applications.," World J. Plast. Surg., vol. 8, no. 3, p.352–358, 2019.

DOI: 10.7546/crabs.2019.01.16

Google Scholar

[36] A. N. Akram and C. Zhang, "Extraction of collagen-II with pepsin and ultrasound treatment from chicken sternal cartilage; physicochemical and functional properties," Ultrason. Sonochem., vol. 64, no. September 2019, p.105053, 2020.

DOI: 10.1016/j.ultsonch.2020.105053

Google Scholar

[37] M. A. Rizk and N. Y. Mostafa, "Extraction and characterization of collagen from buffalo skin for biomedical applications," Orient. J. Chem., vol. 32, no. 3, p.1601–1609, 2016.

DOI: 10.13005/ojc/320336

Google Scholar

[38] A. R. Vidal et al., "Extraction and characterization of collagen from sheep slaughter by-products," Waste Manag., vol. 102, p.838–846, 2020.

DOI: 10.1016/j.wasman.2019.12.004

Google Scholar

[39] A. K. Lynn, I. V. Yannas, and W. Bonfield, "Antigenicity and immunogenicity of collagen," J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 71, no. 2, p.343–354, 2004.

DOI: 10.1002/jbm.b.30096

Google Scholar

[40] P. Kittiphattanabawon, S. Benjakul, W. Visessanguan, T. Nagai, and M. Tanaka, "Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus)," Food Chem., vol. 89, no. 3, p.363–372, 2005.

DOI: 10.1016/j.foodchem.2004.02.042

Google Scholar

[41] F. Pati, P. Datta, B. Adhikari, S. Dhara, K. Ghosh, and P. K. Das Mohapatra, "Collagen scaffolds derived from fresh water fish origin and their biocompatibility," J. Biomed. Mater. Res. - Part A, vol. 100 A, no. 4, p.1068–1079, 2012.

DOI: 10.1002/jbm.a.33280

Google Scholar

[42] L. T. Minh Thuy, E. Okazaki, and K. Osako, "Isolation and characterization of acid-soluble collagen from the scales of marine fishes from Japan and Vietnam," Food Chem., vol. 149, p.264–270, 2014.

DOI: 10.1016/j.foodchem.2013.10.094

Google Scholar

[43] F. F. Felician, C. Xia, W. Qi, and H. Xu, "Collagen from Marine Biological Sources and Medical Applications," Chem. Biodivers., vol. 15, no. 5, 2018.

DOI: 10.1002/cbdv.201700557

Google Scholar

[44] P. Yadav, H. Yadav, V. G. Shah, G. Shah, and G. Dhaka, "Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review," J. Clin. Diagnostic Res., vol. 9, no. 9, p.21–25, 2015.

DOI: 10.7860/JCDR/2015/13907.6565

Google Scholar

[45] J. Krishnamoorthi, P. Ramasamy, V. Shanmugam, and A. Shanmugam, "Isolation and partial characterization of collagen from outer skin of Sepia pharaonis (Ehrenberg, 1831) from Puducherry coast," Biochem. Biophys. Reports, vol. 10, no. February, p.39–45, 2017.

DOI: 10.1016/j.bbrep.2017.02.006

Google Scholar

[46] T. Muthukumar, G. Sreekumar, T. P. Sastry, and M. Chamundeeswari, "Collagen as a potential biomaterial in biomedical applications," Rev. Adv. Mater. Sci., vol. 53, no. 1, p.29–39, 2018.

DOI: 10.1515/rams-2018-0002

Google Scholar

[47] M. Azizur Rahman, "Collagen of extracellular matrix from marine invertebrates and its medical applications," Mar. Drugs, vol. 17, no. 2, p.1–12, 2019.

DOI: 10.3390/md17020118

Google Scholar

[48] Y. Tang et al., "Physicochemical properties and biocompatibility evaluation of collagen from the skin of giant croaker (Nibea japonica)," Mar. Drugs, vol. 16, no. 7, 2018.

DOI: 10.3390/md16070222

Google Scholar

[49] S. Chen et al., "Rapid isolation of high purity pepsin-soluble type I collagen from scales of red drum fish (Sciaenops ocellatus)," Food Hydrocoll., vol. 52, p.468–477, 2016.

DOI: 10.1016/j.foodhyd.2015.07.027

Google Scholar

[50] C. Huang, J. Kuo, S. Wu, and H. Tsai, "Isolation and characterization of fish scale collagen from tilapia ( Oreochromis sp .) by a novel extrusion – hydro-extraction process," FOOD Chem., vol. 190, p.997–1006, 2016.

DOI: 10.1016/j.foodchem.2015.06.066

Google Scholar

[51] J. Zhang et al., "Structural characterization, in-vivo acute systemic toxicity assessment and in-vitro intestinal absorption properties of tilapia (Oreochromis niloticus) skin acid and pepsin solublilized type I collagen," Process Biochem., vol. 51, no. 12, p.2017–2025, 2016.

DOI: 10.1016/j.procbio.2016.08.009

Google Scholar

[52] A. A. El-Rashidy, A. Gad, A. E. H. G. Abu-Hussein, S. I. Habib, N. A. Badr, and A. A. Hashem, "Chemical and biological evaluation of Egyptian Nile Tilapia (Oreochromis niloticas) fish scale collagen," Int. J. Biol. Macromol., vol. 79, p.618–626, 2015.

DOI: 10.1016/j.ijbiomac.2015.05.019

Google Scholar

[53] P. K. Bhagwat and P. B. Dandge, "Isolation, characterization and valorizable applications of fish scale collagen in food and agriculture industries," Biocatal. Agric. Biotechnol., vol. 7, p.234–240, 2016.

DOI: 10.1016/j.bcab.2016.06.010

Google Scholar

[54] J. Quintero and J. E. Zapata, "Optimización de la Extracción del Colágeno Soluble en Ácido de Subproductos de Tilapia Roja (Oreochromis spp) mediante un Diseño de Superficie de Respuesta," Inf. Tecnol., vol. 28, no. 1, p.109–120, 2017.

DOI: 10.4067/S0718-07642017000100011

Google Scholar

[55] G. K. Pal and P. V. Suresh, "Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients," Innov. Food Sci. Emerg. Technol., vol. 37, no. Part B, p.201–215, 2016.

DOI: 10.1016/j.ifset.2016.03.015

Google Scholar

[56] L. Sun, B. Li, D. Yao, W. Song, and H. Hou, "Effects of cross-linking on mechanical, biological properties and biodegradation behavior of Nile tilapia skin collagen sponge as a biomedical material," J. Mech. Behav. Biomed. Mater., vol. 80, no. January, p.51–58, 2018.

DOI: 10.1016/j.jmbbm.2018.01.006

Google Scholar

[57] Z. Bao et al., "The promising indicators of the thermal and mechanical properties of collagen from bass and tilapia: Synergistic effects of hydroxyproline and cysteine," Biomater. Sci., vol. 6, no. 11, p.3042–3052, 2018.

DOI: 10.1039/c8bm00675j

Google Scholar

[58] D. Liu, P. Zhou, T. Li, and J. M. Regenstein, "Comparison of acid-soluble collagens from the skins and scales of four carp species," Food Hydrocoll., vol. 41, p.290–297, 2014.

DOI: 10.1016/j.foodhyd.2014.04.030

Google Scholar

[59] G. K. S. Arumugam, D. Sharma, R. M. Balakrishnan, and J. B. P. Ettiyappan, "Extraction, optimization and characterization of collagen from sole fish skin," Sustain. Chem. Pharm., vol. 9, no. March, p.19–26, 2018.

DOI: 10.1016/j.scp.2018.04.003

Google Scholar

[60] H. Wang, Y. Liang, H. Wang, H. Zhang, M. Wang, and L. Liu, "Physical-chemical properties of collagens from skin, scale, and bone of grass carp (Ctenopharyngodon idellus)," J. Aquat. Food Prod. Technol., vol. 23, no. 3, p.264–277, 2014.

DOI: 10.1080/10498850.2012.713450

Google Scholar

[61] L. Tang, S. Chen, W. Su, W. Weng, K. Osako, and M. Tanaka, "Physicochemical properties and film-forming ability of fish skin collagen extracted from different freshwater species," Process Biochem., vol. 50, no. 1, p.148–155, 2015.

DOI: 10.1016/j.procbio.2014.10.015

Google Scholar

[62] J. Skopinska-Wisniewska, K. Olszewski, A. Bajek, A. Rynkiewicz, and A. Sionkowska, "Dialysis as a method of obtaining neutral collagen gels," Mater. Sci. Eng. C, vol. 40, p.65–70, 2014.

DOI: 10.1016/j.msec.2014.03.029

Google Scholar

[63] A. Sionkowska and J. Kozłowska, "Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute," Int. J. Biol. Macromol., vol. 47, no. 4, p.483–487, 2010.

DOI: 10.1016/j.ijbiomac.2010.07.002

Google Scholar

[64] Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim, and S. Ramakrishna, "Crosslinking of the electrospun gelatin nanofibers," Polymer (Guildf)., vol. 47, no. 8, p.2911–2917, 2006.

DOI: 10.1016/j.polymer.2006.02.046

Google Scholar

[65] S. J. Liu, Y. C. Kau, C. Y. Chou, J. K. Chen, R. C. Wu, and W. L. Yeh, "Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing," J. Memb. Sci., vol. 355, no. 1–2, p.53–59, 2010.

DOI: 10.1016/j.memsci.2010.03.012

Google Scholar

[66] F. Cúneo, L. Costa-Paiva, A. M. Pinto-Neto, S. S. Morais, and J. Amaya-Farfan, "Effect of dietary supplementation with collagen hydrolysates on bone metabolism of postmenopausal women with low mineral density," Maturitas, vol. 65, no. 3, p.253–257, 2010.

DOI: 10.1016/j.maturitas.2009.10.002

Google Scholar

[67] H. C. Gemalmaz, K. Sarıyılmaz, O. Ozkunt, S. G. Gurgen, and S. Silay, "Role of a combination dietary supplement containing mucopolysaccharides, vitamin C, and collagen on tendon healing in rats," Acta Orthop. Traumatol. Turc., vol. 52, no. 6, p.452–458, 2018.

DOI: 10.1016/j.aott.2018.06.012

Google Scholar

[68] Q. Zhu, Y. Li, S. Li, and W. Wang, "Fabrication and characterization of acid soluble collagen stabilized Pickering emulsions," Food Hydrocoll., vol. 106, no. March, p.105875, 2020.

DOI: 10.1016/j.foodhyd.2020.105875

Google Scholar

[69] R. Su, X. L. Zhu, D. Di Fan, Y. Mi, C. Y. Yang, and X. Jia, "Encapsulation of probiotic Bifidobacterium longum BIOMA 5920 with alginate-human-like collagen and evaluation of survival in simulated gastrointestinal conditions," Int. J. Biol. Macromol., vol. 49, no. 5, p.979–984, 2011.

DOI: 10.1016/j.ijbiomac.2011.08.018

Google Scholar

[70] M. V. Bhuimbar, P. K. Bhagwat, and P. B. Dandge, "Extraction and characterization of acid soluble collagen from fish waste: Development of collagen-chitosan blend as food packaging film," J. Environ. Chem. Eng., vol. 7, no. 2, p.102983, 2019.

DOI: 10.1016/j.jece.2019.102983

Google Scholar

[71] P. B. D. Prashant K. Bhagwat, "Collagen and collagenolytic proteases: A review," in Biocatalysis and Agricultural Biotechnology, 2018.

DOI: 10.1016/j.bcab.2018.05.005

Google Scholar

[72] A. Irastorza, I. Zarandona, M. Andonegi, P. Guerrero, and K. de la Caba, "The versatility of collagen and chitosan: from food to biomedical applications," Food Hydrocoll., vol. 116, no. January, p.106633, 2021.

DOI: 10.1016/j.foodhyd.2021.106633

Google Scholar

[73] M. do L. L. R. Menezes, H. L. Ribeiro, F. de O. M. d. S. Abreu, J. P. de A. Feitosa, and M. de S. M. de S. Filho, "Optimization of the collagen extraction from Nile tilapia skin (Oreochromis niloticus) and its hydrogel with hyaluronic acid," Colloids Surfaces B Biointerfaces, vol. 189, no. February, p.110852, 2020.

DOI: 10.1016/j.colsurfb.2020.110852

Google Scholar

[74] C. Bi et al., "Effect of extraction methods on the preparation of electrospun/electrosprayed microstructures of tilapia skin collagen," J. Biosci. Bioeng., vol. 128, no. 2, p.234–240, 2019.

DOI: 10.1016/j.jbiosc.2019.02.004

Google Scholar

[75] J. Li et al., "Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering," Process Biochem., vol. 74, no. July, p.156–163, 2018.

DOI: 10.1016/j.procbio.2018.07.009

Google Scholar

[76] J. Peng et al., "Effect of extraction methods on the properties of tilapia scale gelatins," Int. J. Biol. Macromol., vol. 221, no. July, p.1150–1160, 2022.

DOI: 10.1016/j.ijbiomac.2022.09.094

Google Scholar

[77] A. Irastorza, I. Zarandona, M. Andonegi, P. Guerrero, and K. de la Caba, "The versatility of collagen and chitosan: From food to biomedical applications," Food Hydrocoll., vol. 116, no. December 2020, p.106633, 2021.

DOI: 10.1016/j.foodhyd.2021.106633

Google Scholar

[78] M. Á. V. Rodrigues, M. R. V. Bertolo, C. A. Marangon, V. da C. A. Martins, and A. M. de G. Plepis, "Chitosan and gelatin materials incorporated with phenolic extracts of grape seed and jabuticaba peel: Rheological, physicochemical, antioxidant, antimicrobial and barrier properties," Int. J. Biol. Macromol., vol. 160, p.769–779, 2020.

DOI: 10.1016/j.ijbiomac.2020.05.240

Google Scholar

[79] Y. Jiang et al., "Preparation and characterization of grass carp collagen-chitosan-lemon essential oil composite films for application as food packaging," Int. J. Biol. Macromol., vol. 160, p.340–351, 2020.

DOI: 10.1016/j.ijbiomac.2020.05.202

Google Scholar

[80] R. Hernández-Nava, A. López-Malo, E. Palou, N. Ramírez-Corona, and M. T. Jiménez-Munguía, "Encapsulation of oregano essential oil (Origanum vulgare) by complex coacervation between gelatin and chia mucilage and its properties after spray drying," Food Hydrocoll., vol. 109, no. May, 2020.

DOI: 10.1016/j.foodhyd.2020.106077

Google Scholar

[81] L. F. Wang and J. W. Rhim, "Preparation and application of agar/alginate/collagen ternary blend functional food packaging films," Int. J. Biol. Macromol., vol. 80, p.460–468, 2015.

DOI: 10.1016/j.ijbiomac.2015.07.007

Google Scholar

[82] S. B. Han, B. Won, S. chan Yang, and D. H. Kim, "Asterias pectinifera derived collagen peptide-encapsulating elastic nanoliposomes for the cosmetic application," J. Ind. Eng. Chem., vol. 98, p.289–297, 2021.

DOI: 10.1016/j.jiec.2021.03.039

Google Scholar

[83] P. H. Li et al., "Extraction and characterization of collagen from sea cucumber (Holothuria cinerascens) and its potential application in moisturizing cosmetics," Aquaculture, vol. 515, p.734590, 2020.

DOI: 10.1016/j.aquaculture.2019.734590

Google Scholar

[84] K. Bagheri Miyab et al., "The effect of a hydrolyzed collagen-based supplement on wound healing in patients with burn: A randomized double-blind pilot clinical trial," Burns, vol. 46, no. 1, p.156–163, 2020.

DOI: 10.1016/j.burns.2019.02.015

Google Scholar

[85] C. F. Zhu, G. Z. Li, H. Bin Peng, F. Zhang, Y. Chen, and Y. Li, "Treatment with marine collagen peptides modulates glucose and lipid metabolism in chinese patients with type 2 diabetes mellitus," Appl. Physiol. Nutr. Metab., vol. 35, no. 6, p.797–804, 2010.

DOI: 10.1139/H10-075

Google Scholar

[86] H. Kim, G. H. Yang, and G. H. Kim, "Three-dimensional gelatin/PVA scaffold with nanofibrillated collagen surface for applications in hard-tissue regeneration," Int. J. Biol. Macromol., vol. 135, p.21–28, 2019.

DOI: 10.1016/j.ijbiomac.2019.05.076

Google Scholar

[87] N. Pien et al., "Development of photo-crosslinkable collagen hydrogel building blocks for vascular tissue engineering applications: A superior alternative to methacrylated gelatin?," Mater. Sci. Eng. C, vol. 130, no. September, p.112460, 2021.

DOI: 10.1016/j.msec.2021.112460

Google Scholar

[88] C. Ma et al., "Preparation of oriented collagen fiber scaffolds and its application in bone tissue engineering," Appl. Mater. Today, vol. 22, p.100902, 2021.

DOI: 10.1016/j.apmt.2020.100902

Google Scholar

[89] H. Mondésert, F. Bossard, and D. Favier, "Anisotropic electrospun honeycomb polycaprolactone scaffolds: Elaboration, morphological and mechanical properties," J. Mech. Behav. Biomed. Mater., vol. 113, no. October 2020, 2021.

DOI: 10.1016/j.jmbbm.2020.104124

Google Scholar

[90] X. Zhang, K. Tang, and X. Zheng, "Electrospinning and Crosslinking of COL/PVA Nanofiber-microsphere Containing Salicylic Acid for Drug Delivery," J. Bionic Eng., vol. 13, no. 1, p.143–149, 2016.

DOI: 10.1016/S1672-6529(14)60168-2

Google Scholar

[91] W. Song, D. C. Markel, S. Wang, and T. Shi, "Electrospun polyvinyl alcohol – collagen – hydroxyapatite nanofibers : a biomimetic extracellular matrix for osteoblastic cells," vol. 115101, 2014.

DOI: 10.1088/0957-4484/23/11/115101

Google Scholar

[92] S. Yan et al., "Electrospinning of PVA / sericin nano fi ber and the effect on epithelial-mesenchymal transition of A549 cells," vol. 79, p.436–444, 2017.

DOI: 10.1016/j.msec.2017.05.048

Google Scholar

[93] M. Li, Y. Guo, Y. Wei, A. G. Macdiarmid, and P. I. Lelkes, "Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications," vol. 27, p.2705–2715, 2006.

DOI: 10.1016/j.biomaterials.2005.11.037

Google Scholar

[94] B. Safari, M. Aghazadeh, L. Roshangar, and A. Aghanejad, "A bioactive porous scaffold containing collagen / phosphorous-modified polycaprolactone for osteogenesis of adipose-derived mesenchymal stem cells," Eur. Polym. J., vol. 171, no. February, p.111220, 2022.

DOI: 10.1016/j.eurpolymj.2022.111220

Google Scholar

[95] D. Dhinasekaran, S. Vimalraj, A. R. Rajendran, S. Saravanan, B. Purushothaman, and B. Subramaniam, "Bio-inspired multifunctional collagen/electrospun bioactive glass membranes for bone tissue engineering applications," Mater. Sci. Eng. C, vol. 126, no. October 2020, p.111856, 2021.

DOI: 10.1016/j.msec.2020.111856

Google Scholar

[96] L. Gu, T. Shan, Y. xuan Ma, F. R. Tay, and L. Niu, "Novel Biomedical Applications of Crosslinked Collagen," Trends Biotechnol., vol. 37, no. 5, p.464–491, 2019.

DOI: 10.1016/j.tibtech.2018.10.007

Google Scholar

[97] N. Davidenko et al., "Optimisation of UV irradiation as a binding site conserving method for crosslinking collagen-based scaffolds," J. Mater. Sci. Mater. Med., vol. 27, no. 1, p.1–17, 2016.

DOI: 10.1007/s10856-015-5627-8

Google Scholar

[98] N. Broguiere, F. Formica, G. Barreto, and M. Zenobi-Wong, "Sortase A as a cross-linking enzyme in tissue engineering," Acta Biomater., vol. 77, p.182–190, 2018.

DOI: 10.1016/j.actbio.2018.07.020

Google Scholar

[99] H. Begam, S. K. Nandi, A. Chanda, and B. Kundu, "Effect of bone morphogenetic protein on Zn-HAp and Zn-HAp/collagen composite: A systematic in vivo study," Res. Vet. Sci., vol. 115, p.1–9, 2017.

DOI: 10.1016/j.rvsc.2017.01.012

Google Scholar

[100] I. V. Antoniac et al., "In vitro characterization of novel nanostructured collagen-hydroxyapatite composite scaffolds doped with magnesium with improved biodegradation rate for hard tissue regeneration," Bioact. Mater., vol. 6, no. 10, p.3383–3395, 2021.

DOI: 10.1016/j.bioactmat.2021.02.030

Google Scholar

[101] Y. Wu et al., "Optimizing the bio-degradability and biocompatibility of a biogenic collagen membrane through cross-linking and zinc-doped hydroxyapatite," Acta Biomater., vol. 143, p.159–172, 2022.

DOI: 10.1016/j.actbio.2022.02.004

Google Scholar

[102] Y. Zhang, L. Shen, Y. Cheng, and G. Li, "Stable and biocompatible fibrillar hydrogels based on the self-crosslinking between collagen and oxidized chondroitin sulfate," Polym. Degrad. Stab., vol. 193, p.109742, 2021.

DOI: 10.1016/j.polymdegradstab.2021.109742

Google Scholar