[1]
R. Resnik, Misch's Contemporary Implant Dentistry, 4th Edition, Elsevier, Amsterdam, Nederland, 2020.
Google Scholar
[2]
C.-J. Ivanoff, K. Grondahl, L. Sennerby, C. Bergstrom, U. Lekholm, Influence of variations in implant diameters: a 3-to 5-year retrospective clinical report, I. J. O. Max. Imp. 14(2) (1999) 173 180.
DOI: 10.1097/00008505-199904000-00010
Google Scholar
[3]
C. E. Misch, Dental Implant Prosthetics, 2nd Edition, Mosby Elsevier, St. Louis Missouri, USA, 2014.
Google Scholar
[4]
R. K. Schenk, D. Buser, Osseointegration: a reality, Periodontology 2000. 17(1) (1998) 22-35.
DOI: 10.1111/j.1600-0757.1998.tb00120.x
Google Scholar
[5]
S. Faegh, S. Müftü, Load transfer along the bone–dental implant interface, J. biomech. 43(9) (2010) 1761-1770.
DOI: 10.1016/j.jbiomech.2010.02.017
Google Scholar
[6]
V. Khened, S. Bhandarkar, P. Dhatrak, Dental implant thread profile optimization using Taguchi approach, Materials Today: Proceedings. 62(6) (2022) 3344-3349.
DOI: 10.1016/j.matpr.2022.04.245
Google Scholar
[7]
J. Steigenga, K. Al‐Shammari, C. Misch, F. H. Nociti Jr, H. L. Wang, Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits, J. periodontology. 75(9) (2004) 1233-1241.
DOI: 10.1902/jop.2004.75.9.1233
Google Scholar
[8]
P. Ausiello, P. Franciosa, M. Martorelli, D. C. Watts, Effects of thread features in osseo-integrated titanium implants using a statistics-based finite element method, Den. Materials. 28(8) (2012) 919-927.
DOI: 10.1016/j.dental.2012.04.035
Google Scholar
[9]
H. Abuhussein, G. Pagni, A. Rebaudi, H. L. Wang, The effect of thread pattern upon implant osseointegration, Clin. Oral Imp. Res. 21(2) (2010) 129-136.
DOI: 10.1111/j.1600-0501.2009.01800.x
Google Scholar
[10]
O. Eraslan, Ö. İnan, The effect of thread design on stress distribution in a solid screw implant: a 3D finite element analysis. Clin. Oral Investigations. 14(4) (2010) 411-416.
DOI: 10.1007/s00784-009-0305-1
Google Scholar
[11]
S. R. Desai, M. S. Desai, G. Katti, I. Karthikeyan, Evaluation of design parameters of eight dental implant designs: A two‑dimensional finite element analysis, N. J. Clin. Prac. 15(2) (2012) 176 181.
DOI: 10.4103/1119-3077.97308
Google Scholar
[12]
L. Kong, Y. Zhao, K. Hu, D. Li, H. Zhou, Z. Wu, B. Liu, Selection of the implant thread pitch for optimal biomechanical properties: A three-dimensional finite element analysis, Advan. Eng. Soft. 40(7) (2009) 474-478.
DOI: 10.1016/j.advengsoft.2008.08.003
Google Scholar
[13]
F. A. Hussein, K. N. Salloomi, B. Y. Abdulrahman, A. R. Al-Zahawi, L. A. Sabri, Effect of thread depth and implant shape on stress distribution in anterior and posterior regions of mandible bone: A finite element analysis, Dent. Res. J. 16(3) (2019) 200-207.
DOI: 10.4103/1735-3327.255745
Google Scholar
[14]
J. P. Geng, Q. S. Ma, W. Xu, K. B. C. Tan, G. R. Liu, Finite element analysis of four thread‐form configurations in a stepped screw implant, J. oral rehab. 31(3) (2004) 233-239.
DOI: 10.1046/j.0305-182x.2003.01213.x
Google Scholar
[15]
K. N. Chethan, N. S. Bhat, M. Zuber, B. S. Shenoy, Finite element analysis of hip implant with varying in taper neck lengths under static loading conditions, Com. Meth. Prog. Biomed. 208 (2021) 106273.
DOI: 10.1016/j.cmpb.2021.106273
Google Scholar
[16]
A. AL-sanea, M. Eltayeb, N. N. Kumar, Simulation and analysis of artificial hip joint using software modeling, I. C. C. C. E. E. E. (2018) 1-6.
DOI: 10.1109/iccceee.2018.8515835
Google Scholar
[17]
T. Çelik, İ. Mutlu, A. Özkan, Y. Kişioğlu, The effect of cement on hip stem fixation: a biomechanical study, Aust. Physic. Eng. Sci. Med. 40(2) (2017) 349-357.
DOI: 10.1007/s13246-017-0539-1
Google Scholar
[18]
M. Bola, J. Simões, A. Ramos, Finite element analysis to predict short and medium-term performance of the anatomical comprehensive® total shoulder System, Comp. Meth. Prog. Biomed. 219 (2022) 106751.
DOI: 10.1016/j.cmpb.2022.106751
Google Scholar
[19]
T. Çelik, İ. Mutlu, A. Özkan, Y. Kişioğlu, The evaluation of the relation between dynamic hip screw positions and its failure in unstable femur fractures, Aust. J. Mech. Eng. 19(3) (2021) 261 267.
DOI: 10.1080/14484846.2019.1604933
Google Scholar
[20]
B. Babaei, P. Shouha, V. Birman, P. Farrar, L. Prentice, G. Prusty, The effect of dental restoration geometry and material properties on biomechanical behaviour of a treated molar tooth: A 3D finite element analysis, J. Mech. Behav. Biomed. Materials. 125 (2022) 104892.
DOI: 10.1016/j.jmbbm.2021.104892
Google Scholar
[21]
B. Mohammadi, Z. Abdoli, E. Anbarzadeh, Investigation of the effect of abutment angle tolerance on the stress created in the fixture and screw in dental implants using finite element analysis, Journal of Biomimetics, Biomaterials and Biomedical Engineering. 51 (2021) 63-76.
DOI: 10.4028/www.scientific.net/jbbbe.51.63
Google Scholar
[22]
J. Yan, Z. Liao, Y. Yu, Finite element analysis of dynamic changes in spinal mechanics of osteoporotic lumbar fracture, Europ. J. Med. Res. 27(1) (2022). 1-9.
DOI: 10.1186/s40001-022-00769-x
Google Scholar
[23]
Ž. Donik, B. Nečemer, S. Glodež, J. Kramberger, Finite element analysis of the mechanical performance of a two-layer polymer composite stent structure, Eng. Fail. Ana. 137 (2022) 106267.
DOI: 10.1016/j.engfailanal.2022.106267
Google Scholar
[24]
A. A. Soufivand, N. Abolfathi, S. A. Hashemi, S. J. Lee, Prediction of mechanical behavior of 3D bioprinted tissue-engineered scaffolds using finite element method (FEM) analysis, Additive Manufacturing. 33 (2020) 101181.
DOI: 10.1016/j.addma.2020.101181
Google Scholar
[25]
R. B. Osman, M. V. Swain, A critical review of dental implant materials with an emphasis on titanium versus zirconia, Materials. 8(3) (2015) 932-958.
DOI: 10.3390/ma8030932
Google Scholar
[26]
D. B. Alemayehu, Y. R. Jeng, Three-dimensional finite element investigation into effects of implant thread design and loading rate on stress distribution in dental implants and anisotropic bone, Materials. 14(22) (2021) 6974.
DOI: 10.3390/ma14226974
Google Scholar
[27]
N. Djebbar, B. Serier, B. B. Bouiadjra, Stress distribution of the variable dynamic loading in the dental implant: A three-dimensional finite element analysis, Journal of Biomimetics, Biomaterials and Biomedical Engineering. 31 (2017) 44-52.
DOI: 10.4028/www.scientific.net/jbbbe.31.44
Google Scholar
[28]
A. Yodrux, N. Yodpijit, M. Jongprasithpornt, Stress and displacement analysis of dental implant threads using three-dimensional finite element analysis, App. Sci. Eng. Prog. 12(3) (2019) 216 222.
DOI: 10.14416/j.ijast.2018.09.002
Google Scholar
[29]
M. T. Hamed, H. A. Mously, A. H. Hashem, G. H. Naguib, Influence of coefficient of friction on stress distribution in implant components and surrounding bone, J. Res. Med. Dent. Sci. 7(6) (2019) 48-53.
Google Scholar
[30]
Z. Arsalanloo, R. Telchi, K. G. Osgouie, Optimum selection of the dental implants according to length and diameter parameters by FE method in the anterior position, I. J. Bio. Bioch. Bioin. 4(4) (2014) 265.
DOI: 10.7763/ijbbb.2014.v4.353
Google Scholar
[31]
O. Kayabaşı, E. Yüzbasıoğlu, F. Erzincanlı, Static, dynamic and fatigue behaviors of dental implant using finite element method, Advan. Eng. Soft. 37(10) (2006) 649-658.
DOI: 10.1016/j.advengsoft.2006.02.004
Google Scholar
[32]
M. Shash, H. Nazha, W. Abbas, Influence of different abutment designs on the biomechanical behavior of one-piece zirconia dental implants and their surrounding bone: A 3D-FEA, Irbm. 40(6) (2019) 313-319.
DOI: 10.1016/j.irbm.2019.07.001
Google Scholar
[33]
G. Boemio, P. Rizzo, L. D. Nardo, Assessment of dental implant stability by means of the electromechanical impedance method, Smart Mater. Struct. 20(4) (2011) 045008.
DOI: 10.1088/0964-1726/20/4/045008
Google Scholar
[34]
L. L. Hench, J. Wilson, an Introduction to Bioceramics, World Scientific Publishing, Singapore, 1993.
Google Scholar
[35]
T. Li, K. Hu, L. Cheng, Y. Ding, Y. Ding, J. Shao, L. Kong, Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality–A 3D finite element analysis, Applied Mathematical Modelling. 35(1) (2011) 446-456.
DOI: 10.1016/j.apm.2010.07.008
Google Scholar
[36]
S. Wentaschek, S. Tomalla, I. Schmidtmann, K. M. Lehmann, Preload, coefficient of friction, and thread friction in an implant-abutment-screw complex, I. J. Prosthodontics. 30(6) (2017) 542 544.
DOI: 10.11607/ijp.5286
Google Scholar
[37]
N. Djebbar, A. Bachiri, B. Boutabout, Comparison of stress distribution in surrounding bone during insertion of dental implants on four implant threads under the effect of an impact: a finite element study, Journal of Biomimetics, Biomaterials and Biomedical Engineering. 54 (2022) 89-101.
DOI: 10.4028/www.scientific.net/jbbbe.54.89
Google Scholar
[38]
A. Pegoretti, L. Fambri, G. Zappini, M. Bianchetti, Finite element analysis of a glass fibre reinforced composite endodontic post, Biomaterials. 23(13) (2002) 2667-2682.
DOI: 10.1016/s0142-9612(01)00407-0
Google Scholar
[39]
L. Pierrisnard, F. Bohin, P. Renault, M. Barquins, Corono-radicular reconstruction of pulpless teeth: a mechanical study using finite element analysis, J. Pros. Dent. 88(4) (2002) 442-448.
DOI: 10.1067/mpr.2002.128376
Google Scholar
[40]
M. M. Oswal, U. N. Amasi, M. S. Oswal, A. S. Bhagat, Influence of three different implant thread designs on stress distribution: A three-dimensional finite element analysis, J. Indian Pros. Society. 16(4) (2016) 359.
DOI: 10.4103/0972-4052.191283
Google Scholar
[41]
C. Sharma, T. Kalra, M. Kumar, A. Bansal, A. K. Chawla, To evaluate the influence of different implant thread designs on stress distribution of osseointegrated implant: a three-dimensional finite-element analysis study–an in vitro study, Dent. J. Adv. Studies. 8(01) (2020) 09-16.
DOI: 10.1055/s-0040-1709218
Google Scholar