The Effect of V-Thread and Square Thread Dental Implants on Bone Stresses

Article Preview

Abstract:

The relationship between implant thread design and dental bone arguably has an influence on the distribution of bone stresses. However, the existing data on the influence of the thread profiles on bone stresses is considerably conflicting. For example, some studies concluded that thread shape has a substantial effect on the intensity of bone stresses, while others revealed that thread shape has no effect on the intensity of bone stresses. Accordingly, this study aims to computationally investigate and compare the effect of dental implant thread design on bone stresses under axial loading using a finite element analysis (FEA) approach. A geometrical model of V-thread and square thread implants, with a fixed thread pitch of 0.8 mm and a depth of 42 mm, and the surrounding bone was developed to assess the stresses generated within the implant components and bone structure under a 114 N axial load. The simulation is primarily concerned with the von Mises stresses within the implant components and the surrounding bone. The results demonstrate that the V-thread implant causes extremely high stress on the cortical and cancellous bones compared to the square thread implant. For example, the maximum stresses induced in the cortical bone are 195.3 MPa and 68.8 MPa, while the maximum stresses created in the cancellous bone are 19.7 Mpa and 2.2 Mpa in both designs, respectively. In addition, the cortical bone stresses substantially exceed the implant body stresses in both designs, with maximum stresses of 93.18 Mpa and 41 Mpa for V-thread and square-thread implants, respectively. However, the implant thread shape doesn’t affect the stress distribution in the abutment and screw. In general, the results show that implant thread design can result in featured mechanical stresses in the implant body and bone structure.

You might also be interested in these eBooks

Info:

Pages:

83-96

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Resnik, Misch's Contemporary Implant Dentistry, 4th Edition, Elsevier, Amsterdam, Nederland, 2020.

Google Scholar

[2] C.-J. Ivanoff, K. Grondahl, L. Sennerby, C. Bergstrom, U. Lekholm, Influence of variations in implant diameters: a 3-to 5-year retrospective clinical report, I. J. O. Max. Imp. 14(2) (1999) 173 180.

DOI: 10.1097/00008505-199904000-00010

Google Scholar

[3] C. E. Misch, Dental Implant Prosthetics, 2nd Edition, Mosby Elsevier, St. Louis Missouri, USA, 2014.

Google Scholar

[4] R. K. Schenk, D. Buser, Osseointegration: a reality, Periodontology 2000. 17(1) (1998) 22-35.

DOI: 10.1111/j.1600-0757.1998.tb00120.x

Google Scholar

[5] S. Faegh, S. Müftü, Load transfer along the bone–dental implant interface, J. biomech. 43(9) (2010) 1761-1770.

DOI: 10.1016/j.jbiomech.2010.02.017

Google Scholar

[6] V. Khened, S. Bhandarkar, P. Dhatrak, Dental implant thread profile optimization using Taguchi approach, Materials Today: Proceedings. 62(6) (2022) 3344-3349.‏

DOI: 10.1016/j.matpr.2022.04.245

Google Scholar

[7] J. Steigenga, K. Al‐Shammari, C. Misch, F. H. Nociti Jr, H. L. Wang, Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits, J. periodontology. 75(9) (2004) 1233-1241.

DOI: 10.1902/jop.2004.75.9.1233

Google Scholar

[8] P. Ausiello, P. Franciosa, M. Martorelli, D. C. Watts, Effects of thread features in osseo-integrated titanium implants using a statistics-based finite element method, Den. Materials. 28(8) (2012) 919-927.‏

DOI: 10.1016/j.dental.2012.04.035

Google Scholar

[9] H. Abuhussein, G. Pagni, A. Rebaudi, H. L. Wang, The effect of thread pattern upon implant osseointegration, Clin. Oral Imp. Res. 21(2) (2010) 129-136.‏

DOI: 10.1111/j.1600-0501.2009.01800.x

Google Scholar

[10] O. Eraslan, Ö. İnan, The effect of thread design on stress distribution in a solid screw implant: a 3D finite element analysis. Clin. Oral Investigations. 14(4) (2010) 411-416.

DOI: 10.1007/s00784-009-0305-1

Google Scholar

[11] S. R. Desai, M. S. Desai, G. Katti, I. Karthikeyan, Evaluation of design parameters of eight dental implant designs: A two‑dimensional finite element analysis, N. J. Clin. Prac. 15(2) (2012) 176 181.‏

DOI: 10.4103/1119-3077.97308

Google Scholar

[12] L. Kong, Y. Zhao, K. Hu, D. Li, H. Zhou, Z. Wu, B. Liu, Selection of the implant thread pitch for optimal biomechanical properties: A three-dimensional finite element analysis, Advan. Eng. Soft. 40(7) (2009) 474-478.‏

DOI: 10.1016/j.advengsoft.2008.08.003

Google Scholar

[13] F. A. Hussein, K. N. Salloomi, B. Y. Abdulrahman, A. R. Al-Zahawi, L. A. Sabri, Effect of thread depth and implant shape on stress distribution in anterior and posterior regions of mandible bone: A finite element analysis, Dent. Res. J. 16(3) (2019) 200-207.‏

DOI: 10.4103/1735-3327.255745

Google Scholar

[14] J. P. Geng, Q. S. Ma, W. Xu, K. B. C. Tan, G. R. Liu, Finite element analysis of four thread‐form configurations in a stepped screw implant, J. oral rehab. 31(3) (2004) 233-239.

DOI: 10.1046/j.0305-182x.2003.01213.x

Google Scholar

[15] K. N. Chethan, N. S. Bhat, M. Zuber, B. S. Shenoy, Finite element analysis of hip implant with varying in taper neck lengths under static loading conditions, Com. Meth. Prog. Biomed. 208 (2021) 106273.

DOI: 10.1016/j.cmpb.2021.106273

Google Scholar

[16] A. AL-sanea, M. Eltayeb, N. N. Kumar, Simulation and analysis of artificial hip joint using software modeling, I. C. C. C. E. E. E. (2018) 1-6.

DOI: 10.1109/iccceee.2018.8515835

Google Scholar

[17] T. Çelik, İ. Mutlu, A. Özkan, Y. Kişioğlu, The effect of cement on hip stem fixation: a biomechanical study, Aust. Physic. Eng. Sci. Med. 40(2) (2017) 349-357.

DOI: 10.1007/s13246-017-0539-1

Google Scholar

[18] M. Bola, J. Simões, A. Ramos, Finite element analysis to predict short and medium-term performance of the anatomical comprehensive® total shoulder System, Comp. Meth. Prog. Biomed. 219 (2022) 106751.

DOI: 10.1016/j.cmpb.2022.106751

Google Scholar

[19] T. Çelik, İ. Mutlu, A. Özkan, Y. Kişioğlu, The evaluation of the relation between dynamic hip screw positions and its failure in unstable femur fractures, Aust. J. Mech. Eng. 19(3) (2021) 261 267.

DOI: 10.1080/14484846.2019.1604933

Google Scholar

[20] B. Babaei, P. Shouha, V. Birman, P. Farrar, L. Prentice, G. Prusty, The effect of dental restoration geometry and material properties on biomechanical behaviour of a treated molar tooth: A 3D finite element analysis, J. Mech. Behav. Biomed. Materials. 125 (2022) 104892.

DOI: 10.1016/j.jmbbm.2021.104892

Google Scholar

[21] B. Mohammadi, Z. Abdoli, E. Anbarzadeh, Investigation of the effect of abutment angle tolerance on the stress created in the fixture and screw in dental implants using finite element analysis, Journal of Biomimetics, Biomaterials and Biomedical Engineering. 51 (2021) 63-76.

DOI: 10.4028/www.scientific.net/jbbbe.51.63

Google Scholar

[22] J. Yan, Z. Liao, Y. Yu, Finite element analysis of dynamic changes in spinal mechanics of osteoporotic lumbar fracture, Europ. J. Med. Res. 27(1) (2022). 1-9.

DOI: 10.1186/s40001-022-00769-x

Google Scholar

[23] Ž. Donik, B. Nečemer, S. Glodež, J. Kramberger, Finite element analysis of the mechanical performance of a two-layer polymer composite stent structure, Eng. Fail. Ana. 137 (2022) 106267.

DOI: 10.1016/j.engfailanal.2022.106267

Google Scholar

[24] A. A. Soufivand, N. Abolfathi, S. A. Hashemi, S. J. Lee, Prediction of mechanical behavior of 3D bioprinted tissue-engineered scaffolds using finite element method (FEM) analysis, Additive Manufacturing. 33 (2020) 101181.

DOI: 10.1016/j.addma.2020.101181

Google Scholar

[25] R. B. Osman, M. V. Swain, A critical review of dental implant materials with an emphasis on titanium versus zirconia, Materials. 8(3) (2015) 932-958.

DOI: 10.3390/ma8030932

Google Scholar

[26] D. B. Alemayehu, Y. R. Jeng, Three-dimensional finite element investigation into effects of implant thread design and loading rate on stress distribution in dental implants and anisotropic bone, Materials. 14(22) (2021) 6974.

DOI: 10.3390/ma14226974

Google Scholar

[27] N. Djebbar, B. Serier, B. B. Bouiadjra, Stress distribution of the variable dynamic loading in the dental implant: A three-dimensional finite element analysis, Journal of Biomimetics, Biomaterials and Biomedical Engineering. 31 (2017) 44-52.

DOI: 10.4028/www.scientific.net/jbbbe.31.44

Google Scholar

[28] A. Yodrux, N. Yodpijit, M. Jongprasithpornt, Stress and displacement analysis of dental implant threads using three-dimensional finite element analysis, App. Sci. Eng. Prog. 12(3) (2019) 216 222.‏

DOI: 10.14416/j.ijast.2018.09.002

Google Scholar

[29] M. T. Hamed, H. A. Mously, A. H. Hashem, G. H. Naguib, Influence of coefficient of friction on stress distribution in implant components and surrounding bone, J. Res. Med. Dent. Sci. 7(6) (2019) 48-53.

Google Scholar

[30] Z. Arsalanloo, R. Telchi, K. G. Osgouie, Optimum selection of the dental implants according to length and diameter parameters by FE method in the anterior position, I. J. Bio. Bioch. Bioin. 4(4) (2014) 265.

DOI: 10.7763/ijbbb.2014.v4.353

Google Scholar

[31] O. Kayabaşı, E. Yüzbasıoğlu, F. Erzincanlı, Static, dynamic and fatigue behaviors of dental implant using finite element method, Advan. Eng. Soft. 37(10) (2006) 649-658.

DOI: 10.1016/j.advengsoft.2006.02.004

Google Scholar

[32] M. Shash, H. Nazha, W. Abbas, Influence of different abutment designs on the biomechanical behavior of one-piece zirconia dental implants and their surrounding bone: A 3D-FEA, Irbm. 40(6) (2019) 313-319.

DOI: 10.1016/j.irbm.2019.07.001

Google Scholar

[33] G. Boemio, P. Rizzo, L. D. Nardo, Assessment of dental implant stability by means of the electromechanical impedance method, Smart Mater. Struct. 20(4) (2011) 045008.

DOI: 10.1088/0964-1726/20/4/045008

Google Scholar

[34] L. L. Hench, J. Wilson, an Introduction to Bioceramics, World Scientific Publishing, Singapore, 1993.

Google Scholar

[35] T. Li, K. Hu, L. Cheng, Y. Ding, Y. Ding, J. Shao, L. Kong, Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality–A 3D finite element analysis, Applied Mathematical Modelling. 35(1) (2011) 446-456.‏

DOI: 10.1016/j.apm.2010.07.008

Google Scholar

[36] S. Wentaschek, S. Tomalla, I. Schmidtmann, K. M. Lehmann, Preload, coefficient of friction, and thread friction in an implant-abutment-screw complex, I. J. Prosthodontics. 30(6) (2017) 542 544.

DOI: 10.11607/ijp.5286

Google Scholar

[37] N. Djebbar, A. Bachiri, B. Boutabout, Comparison of stress distribution in surrounding bone during insertion of dental implants on four implant threads under the effect of an impact: a finite element study, Journal of Biomimetics, Biomaterials and Biomedical Engineering. 54 (2022) 89-101.‏

DOI: 10.4028/www.scientific.net/jbbbe.54.89

Google Scholar

[38] A. Pegoretti, L. Fambri, G. Zappini, M. Bianchetti, Finite element analysis of a glass fibre reinforced composite endodontic post, Biomaterials. 23(13) (2002) 2667-2682.‏

DOI: 10.1016/s0142-9612(01)00407-0

Google Scholar

[39] L. Pierrisnard, F. Bohin, P. Renault, M. Barquins, Corono-radicular reconstruction of pulpless teeth: a mechanical study using finite element analysis, J. Pros. Dent. 88(4) (2002) 442-448.‏

DOI: 10.1067/mpr.2002.128376

Google Scholar

[40] M. M. Oswal, U. N. Amasi, M. S. Oswal, A. S. Bhagat, Influence of three different implant thread designs on stress distribution: A three-dimensional finite element analysis, J. Indian Pros. Society. 16(4) (2016) 359.

DOI: 10.4103/0972-4052.191283

Google Scholar

[41] C. Sharma, T. Kalra, M. Kumar, A. Bansal, A. K. Chawla, To evaluate the influence of different implant thread designs on stress distribution of osseointegrated implant: a three-dimensional finite-element analysis study–an in vitro study, Dent. J. Adv. Studies. 8(01) (2020) 09-16.

DOI: 10.1055/s-0040-1709218

Google Scholar