Development and Characterization of Nanovesicles Containing Phenolic Compounds of Carissa spinarum: Encapsulation, Release Kinetics, Antimicrobial Activity and Mathematical Modeling

Article Preview

Abstract:

The aim of this study was to develop and characterize a delivery system for polyphenols from an extract of Carissa spinarum leaves, based on liposomes. Liposomes loaded with Carissa spinarum polyphenols (nanoliposomal CsP) were prepared by ethanol-solvent injection method and characterized in terms of zeta potential, size, and polydipersity index by using Zeta sizer and Fourier Transform Infrared spectrum analysis. Total Phenolic content was measured by using Folin-Ciocalteu method and entrapment efficiency was evaluated. The release behavior was conducted in Phosphate Buffer Saline (PBS) solution at pH, 7.4 and Kinetic model fitted to evaluate mechanism of release. Disc diffusion sensitivity test was used to evaluate antimicrobial activity of free extract and nanoliposomal CsP. The mean diameter of nanoliposomal CsP was 181 ± 1.02 nm and had 0.345 ± 0.014 polydipersity index. Zeta potential value for nanoliposomal CsP was-45.6 ± 8.84 mV. Entrapment efficiency under the optimum conditions was 66.11 ± 1.11%. and the nanoliposomal CsP was stable over 30 days. The antibacterial activity of nanoliposomal CsP exhibited inhibition zone diameter of 14.33 ± 1.53 mm and 12.00 ± 1.23 mm against S. aureus and E. coli respectively The results reveal the Carrisa spinarum liposome can be applied as potential carrier for delivery of polyphenols to improves therapeutic action against bacterial strain.

You might also be interested in these eBooks

Info:

Pages:

43-52

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Majumder, M. Dhara, L. Adhikari, G. Ghosh, S. Pattnaik, Evaluation of in vitro antibacterial and antioxidant activity of aqueous extracts of Olax psittacorum, Indian J. Pharm. Sci. 81(2019) 99-109.

DOI: 10.4172/pharmaceutical-sciences.1000484

Google Scholar

[2] I. Generalić Mekinić, D. Skroza, I. Ljubenkov, V. Katalinić, V. Šimat, Antioxidant and antimicrobial potential of phenolic metabolites from traditionally used Mediterranean herbs and spices. Foods. 8(2019) 579.

DOI: 10.3390/foods8110579

Google Scholar

[3] G.Tesso, Polyphenols as Potential Dietary Cancer Prevention Strategy for Ethiopia: An Overview, Fam. Med. Prim. Care Rev.4(2018) 33-38.

Google Scholar

[4] A.P. Fatima, P.P. Singh, P. Agarwal, R. Irchhaiya, S. Alok, A. Verma, Treatment of various diseases by Carissa spinarum L.: a promising shrub, Int. J. Pharm. Sci. 1(2013)2489-95.

Google Scholar

[5] I.Ansari, D. Patil, A brief review on phytochemical and pharmacological profile of Carissa spinarum L, Asian J. Pharm. Clin. Res. 11(2018) 12-18.

DOI: 10.22159/ajpcr.2018.v11i9.26316

Google Scholar

[6] L. Bouarab-Chibane, V. Forquet, P. Lantéri, Clément, L. Léonard-Akkari, N. Oulahal, P. Degraeve, C. Bordes, Antibacterial properties of polyphenols: characterization and QSAR (Quantitative structure–activity relationship) models, Front. Microbiol, 2019 18(2019) 829.

DOI: 10.3389/fmicb.2019.00829

Google Scholar

[7] S.Patel, Food, pharmaceutical and industrial potential of Carissa genus: an overview, Rev. Environ. Sci. Biotechnol. 12(2013) 201-208.

DOI: 10.1007/s11157-012-9306-7

Google Scholar

[8] C. Rubaka, P. Ndakidemi, H. Malebo, F. Shahada, Analysis of phytochemical and antibacterial activity of Carissa spinarum Linn crude extracts, European J Med Plants. 4(2014) 937-45.

DOI: 10.9734/ejmp/2014/10599

Google Scholar

[9] L. Biasutto, A. Mattarei, N. Sassi, M. Azzolini, M. Romio, C. Paradisi, M. Zoratti, Improving the Efficacy of Plant Polyphenols, Curr Med Chem Anticancer Agents. 14(2014) 1332

DOI: 10.2174/1871520614666140627150054

Google Scholar

[10] A.R. Bilia, Piazzini, Asprea, Risaliti, Vanti, M.C. Bergonzi, Plants extracts loaded in nanocarriers: An emergent formulating approach, Nat. Prod. Commun. 13(2018) 1157-1160.

DOI: 10.1177/1934578x1801300914

Google Scholar

[11] J.K. Patra, G. Das, L.F. Fraceto, E.V. Campos, M.D. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, G. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, Nano based drug delivery systems: recent developments and future prospects, J. Nanotechnol. 16(2018)1-33.

DOI: 10.1186/s12951-018-0392-8

Google Scholar

[12] G.Bozzuto, A. Molinari, Liposomes as nanomedical devices, Int J Nanomedicine. 10(2015) 975-999.

DOI: 10.2147/ijn.s68861

Google Scholar

[13] Q. Lin, E. London, Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry, PloS one. 9(2014.) e87903.

DOI: 10.1371/journal.pone.0087903

Google Scholar

[14] E. Beltrán-Gracia, A. López-Camacho, I. Higuera-Ciapara, J.B. Velázquez-Fernández, A.A. Vallejo-Cardona, Nanomedicine review: Clinical developments in liposomal applications, Cancer Nanotechnol. 10(2019 )1-40.

DOI: 10.1186/s12645-019-0055-y

Google Scholar

[15] Q.Wang Y.M. Chao, Multifunctional quantum dots and liposome complexes in drug delivery, J. Biomed. Sci. 32(2018) 91-106.

Google Scholar

[16] D. Dag, M.H. Oztop, Formation and Characterization of Green Tea Extract Loaded Liposomes, J. Food Sci. 82(2017) 463-470.

DOI: 10.1111/1750-3841.13615

Google Scholar

[17] Z. Rafiee, M. Nejatian, M. Daeihamed, S.M. Jafari, Application of different nanocarriers for encapsulation of curcumin, Crit Rev Food Sci Nutr.30(2019 )3468-97.

DOI: 10.1080/10408398.2018.1495174

Google Scholar

[18] M.H. Shariare, N.J. Pinky, Abedin, M. Kazi, M.S. Aldughaim, M.N. Uddin, Liposomal Drug Delivery of Blumea lacera Leaf Extract: In-Vivo Hepatoprotective Effects. Nanomater. 30(2022 )2262.

DOI: 10.3390/nano12132262

Google Scholar

[19] L.N. Ramana, S. Sethuraman, U. Ranga, U.M. Krishnan, Development of a liposomal nanodelivery system for nevirapine, J. Biomed. Sci. 17(2010) 17-57

DOI: 10.1186/1423-0127-17-57

Google Scholar

[20] G.R. Genwali, P.P. Acharya, M. Rajbhandari, Isolation of gallic acid and estimation of total phenolic content in some medicinal plants and their antioxidant activity, Nepal J Sci Technol. 14(2013)95-102.

DOI: 10.3126/njst.v14i1.8928

Google Scholar

[21] W.N. Omwoyo, B. Ogutu, F. Oloo, H. Swai, L. Kalombo, P. Melariri, G.M. Mahanga, J.W. Gathirwa, Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles, Int J Nanomedicine. 9(2014)3865.

DOI: 10.2147/ijn.s62630

Google Scholar

[22] P. Matouskova, I. Marova, J. Bokrova, P. Benesova, Effect of Encapsulation on Antimicrobial Activity of Herbal Extracts with Lysozyme, Food Technol Biotechnol. 54(2016)304-316.

Google Scholar

[23] J. Baranauskaite. Duman, Corapcıoğlu, A. Baranauskas, A. Taralp, L. Ivanauskas, J. Bernatoniene, Liposomal incorporation to improve dissolution and stability of rosmarinic acid and carvacrol extracted from Oregano (O. onites L.), Biomed Res. Int. (2018) 1-11.

DOI: 10.1155/2018/6147315

Google Scholar

[24] M.G. Haggag, M.W. Shafaa, H.S. Kareem, A.M. El-Gamil, H.H. El-Hendawy, Screening and enhancement of the antimicrobial activity of some plant oils using liposomes as nanoscale carrier, Bull Natl Res Cent.45(2021 )1-4.

DOI: 10.1186/s42269-021-00497-y

Google Scholar

[25] E. Žagar, J. Grdadolnik J. An infrared spectroscopic study of H-bond network in hyperbranched polyester polyol. J. Mol. Struct. 2003 Oct 1;658(3):143-52.

DOI: 10.1016/s0022-2860(03)00286-2

Google Scholar

[26] M.H. Shariare, M. Rahman, S.R. Lubna, R.S. Roy, J. Abedin, A.L. Marzan, M.A. Altamimi, S.R. Ahamad, A. Ahmad, F.K. Alanazi, M. Kazi, Liposomal drug delivery of Aphanamixis polystachya leaf extracts and its neurobehavioral activity in mice model, Sci. Rep. 10(2020)1-6.

DOI: 10.1038/s41598-020-63894-9

Google Scholar

[27] A.R. Shafaei, M.A. Saeed, A. F. Aisha, Z. H. Ismail, Pharmacokinetics and bioavailability of Orthosiphon stamineus ethanolic extract and its nano liposomes in Sprague–Dawley rats, Int. J. Pharm. Pharmaceut. Sci. 9(2017)199-206.

DOI: 10.22159/ijpps.2017v9i1.12407

Google Scholar

[28] R.T. Upputuri, A.K. Mandal, Sustained release of green tea polyphenols from liposomal nanoparticles; release kinetics and mathematical modelling, Iran. J. Biotechnol. 15(2017) 278-283.

DOI: 10.15171/ijb.1322

Google Scholar

[29] P.Costa, J.M. Sousa Lobo, Modeling and comparison of dissolution profiles, Eur J Pharm Sci. 13(2001) 123-133.

Google Scholar

[30] I. Hızır-Kadı, M. Gültekin-Özgüven, G. Altin, E. Demircan, B. Özçelik, Liposomal nanodelivery systems generated from proliposome for pollen extract with improved solubility and in vitro bioaccessibility, Heliyon. 1(2020) e05030.

DOI: 10.1016/j.heliyon.2020.e05030

Google Scholar

[31] Z. Wang, Y. Ma, H. Khalil, R. Wang, T. Lu, W. Zhao, Y. Zhang, J. Chen, T. Chen, Fusion between fluid liposomes and intact bacteria: Study of driving parameters and in vitro bactericidal efficacy, Int J Nanomedicine. 11(2016)4025-4036.

DOI: 10.2147/ijn.s55807

Google Scholar

[32] B. Noudoost, N. Noori, G. Amo Abedini, H. Gandomi, A. Akhondzadeh Basti, A. Jebeli Javan, F. Ghadami, Encapsulation of green tea extract in nanoliposomes and evaluation of its antibacterial, antioxidant and prebiotic properties, J. Med. Plant Res. 10(2015)66-78.

Google Scholar

[33] N. Mignet, J. Seguin, M. Ramos Romano, L. Brullé, Y.S. Touil, D. Scherman, M. Bessodes, G.G. Chabot, Development of a liposomal formulation of the natural flavonoid fisetin, Int. J. Pharm. 423(2012)69–76.

DOI: 10.1016/j.ijpharm.2011.04.066

Google Scholar

[34] L.Li, F.S. Braiteh, R. Kurzrock, Liposome-encapsulated curcumin: In vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis, Cancer. 104(2005) 1322–1331.

DOI: 10.1002/cncr.21300

Google Scholar

[35] G.Wang, J.J. Wang, G.Y. Yang, S.M. Du, N. Zeng, D.S. Li, R.M. Li, J. Y. Chen, J.B. Feng, S.H. Yuan, F. Ye, Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int. J. Nanomed. 7(2012)271–280.

DOI: 10.2147/ijn.s26935

Google Scholar