[1]
M.A.R. Meier, J.O. Metzger, U.S. Schubert, Plant oil renewable resources as green alternatives in polymer science, Chem. Soc. Rev. 36 (2007) 1788–1802.
DOI: 10.1039/b703294c
Google Scholar
[2]
G.S. Sudha, H. Kalita, S. Mohanty, S.K. Nayak, Biobased epoxy blends from epoxidized castor oil: Effect on mechanical, thermal, and morphological properties, Macromol. Res. 25 (2017) 420–430.
DOI: 10.1007/s13233-017-5063-3
Google Scholar
[3]
S. Sankar lal, S. Kannan, S.K. Sahoo, Influence of flax fiber orientation on mechanical, thermo-mechanical and interfacial adhesion properties of epoxidized methyl ricinoleate modified epoxy composite: A sustainable green composite for cleaner production, Mater. Today Commun. 33 (2022) 104648.
DOI: 10.1016/j.mtcomm.2022.104648
Google Scholar
[4]
P. Taylor, S.G. Tan, W.S. Chow, Thermal Properties , Fracture Toughness and Water Absorption of Epoxy-Palm Oil Blends Thermal Properties , Fracture Toughness and Water Absorption of Epoxy-Palm Oil Blends, Polym. Plast. Technol. Eng. 49 (2010) 900–907.
DOI: 10.1080/03602551003682042
Google Scholar
[5]
A. Chatterjee, S. Kumar, H. Singh, Tensile strength and thermal behavior of jute fibre reinforced polypropylene laminate composite, Compos. Commun. 22 (2020) 100483.
DOI: 10.1016/j.coco.2020.100483
Google Scholar
[6]
J.M. Raquez, M. Deléglise, M.F. Lacrampe, P. Krawczak, Thermosetting (bio)materials derived from renewable resources: A critical review, Prog. Polym. Sci. 35 (2010) 487–509.
DOI: 10.1016/j.progpolymsci.2010.01.001
Google Scholar
[7]
M.L. Loong, D. Cree, Enhancement of Mechanical Properties of Bio-Resin Epoxy/Flax Fiber Composites using Acetic Anhydride, J. Polym. Environ. 26 (2018) 224–234.
DOI: 10.1007/s10924-017-0943-3
Google Scholar
[8]
S. Park, F. Jin, J. Lee, Synthesis and Thermal Properties of Epoxidized Vegetable Oil, Macromol. Rapid Commun. 25 (2004) 724–727.
DOI: 10.1002/marc.200300191
Google Scholar
[9]
S.K. Sahoo, V. Khandelwal, G. Manik, Influence of epoxidized linseed oil and sisal fibers on structure–property relationship of epoxy biocomposite, Polym. Compos. 39 (2018) E2595–E2605.
DOI: 10.1002/pc.24857
Google Scholar
[10]
A. Shabeer, A. Garg, S. Sundararaman, K. Chandrashekhara, V. Flanigan, S. Kapila, Dynamic Mechanical Characterization of a Soy Based Epoxy Resin System, (2005).
DOI: 10.1002/app.22362
Google Scholar
[11]
G.S. Sudha, H. Kalita, S. Mohanty, S.K. Nayak, Biobased epoxy/carbon fiber composites: Effect on mechanical, thermo-mechanical and morphological properties, J. Macromol. Sci. Part A Pure Appl. Chem. 54 (2017) 756–764.
DOI: 10.1080/10601325.2017.1332466
Google Scholar
[12]
S. Sankar lal, S.K. Sahoo, S. Kannan, Investigation on curing kinetics, water diffusion kinetics and thermo- mechanical properties of functionalized castor oil based epoxy copolymers, J. Polym. Res. 29 (2022).
DOI: 10.1007/s10965-022-03122-2
Google Scholar
[13]
Q. Fu, J. Tan, C. Han, X. Zhang, B. Fu, F. Wang, X. Zhu, Synthesis and curing properties of castor oil-based triglycidyl ether epoxy resin, Polym. Adv. Technol. 31 (2020) 2552–2560.
DOI: 10.1002/pat.4982
Google Scholar
[14]
R.A. Pethrick, E.A. Hollins, I. McEwan, E.A. Pollock, D. Hayward, P. Johncock, Effect of cure temperature on the structure and water absorption of epoxy/amine thermosets, Polym. Int. 39 (1996) 275–288. https://doi.org/10.1002/(sici)1097-0126(199604)39:4<275::aid-pi508>3.0.co;2-i.
DOI: 10.1002/(sici)1097-0126(199604)39:4<275::aid-pi508>3.0.co;2-i
Google Scholar
[15]
E. Bayarsaikhan, J.H. Lim, S.H. Shin, K.H. Park, Y.B. Park, J.H. Lee, J.E. Kim, Effects of postcuring temperature on the mechanical properties and biocompatibility of three-dimensional printed dental resin material, Polymers (Basel). 13 (2021).
DOI: 10.3390/polym13081180
Google Scholar
[16]
S.J. Tucker, B. Fu, S. Kar, S. Heinz, J.S. Wiggins, Ambient cure POSS-epoxy matrices for marine composites, Compos. Part A Appl. Sci. Manuf. 41 (2010) 1441–1446.
DOI: 10.1016/j.compositesa.2010.06.005
Google Scholar
[17]
S. Sathyaraj, K. Sekar, Recent advances in bio-based sustainable aliphatic and aromatic epoxy resins for composite applications, Key Eng. Mater. 882 KEM (2021) 121–131.
DOI: 10.4028/www.scientific.net/KEM.882.121
Google Scholar
[18]
K.P. Unnikrishnan, E.T. Thachil, Hybrid polymer networks of epoxy resin and substituted phenolic novolacs, Int. J. Polym. Mater. Polym. Biomater. 55 (2006) 563–576.
DOI: 10.1080/00914030500236833
Google Scholar
[19]
J.I.P. Singh, S. Singh, V. Dhawan, Effect of Curing Temperature on Mechanical Properties of Natural Fiber Reinforced Polymer Composites, J. Nat. Fibers. 15 (2018) 687–696.
DOI: 10.1080/15440478.2017.1354744
Google Scholar
[20]
J.I.P. Singh, S. Singh, V. Dhawan, Influence of fiber volume fraction and curing temperature on mechanical properties of jute/PLA green composites, Polym. Polym. Compos. 28 (2020) 273–284.
DOI: 10.1177/0967391119872875
Google Scholar
[21]
A.S. Ismail, M. Jawaid, N.H. Hamid, R. Yahaya, A. Hassan, M. Asim, A.B.M. Supian, Effect of Curing Temperature on Mechanical Properties of Bio-phenolic/Epoxy Polymer Blends, J. Polym. Environ. 30 (2022) 878–885.
DOI: 10.1007/s10924-021-02244-w
Google Scholar
[22]
C. Shi, C. Ma, Y. Yang, X. Zou, Effects of curing temperature on mechanical properties of polymer-modified OPC-CA-gypsum repair mortar, Constr. Build. Mater. 319 (2022) 126042.
DOI: 10.1016/j.conbuildmat.2021.126042
Google Scholar
[23]
N.R. Paluvai, S. Mohanty, S.K. Nayak, Mechanical and thermal properties of sisal fiber reinforced acrylated epoxidized castor oil toughened diglycidyl ether of bisphenol A epoxy nanocomposites, J. Reinf. Plast. Compos. (2015) 1–15.
DOI: 10.1177/0731684415595126
Google Scholar
[24]
S.K. Sahoo, V. Khandelwal, G. Manik, Development of toughened bio-based epoxy with epoxidized linseed oil as reactive diluent and cured with bio-renewable crosslinker, Polym. Adv. Technol. 29 (2018) 565–574.
DOI: 10.1002/pat.4166
Google Scholar
[25]
M.M. Mughal, M.W. Akhtar, M.M. Baloch, M.A. Memon, J.A. Syed, J.S. Kim, Effect of silanized sisal fiber on thermo-mechanical properties of reinforced epoxy composites, J. Compos. Mater. 54 (2020) 2037–2050.
DOI: 10.1177/0021998319890660
Google Scholar
[26]
S. Dharmalingam, O. Meenakshisundaram, V. Kugarajah, Effect of degree of silanization of luffa on the properties of luffa-epoxy composites, Colloids Surfaces A Physicochem. Eng. Asp. 603 (2020).
DOI: 10.1016/j.colsurfa.2020.125273
Google Scholar
[27]
S.W. Ghori, G.S. Rao, Mechanical and thermal properties of date palm/kenaf fiber-reinforced epoxy hybrid composites, Polym. Compos. 42 (2021) 2217–2224.
DOI: 10.1002/pc.25971
Google Scholar
[28]
R. M. J, G. Goud, Development of Calotropis procera-Glass Fibers Reinforced Epoxy Hybrid Composites: Dynamic Mechanical Properties, J. Nat. Fibers. 19 (2022) 395–402.
DOI: 10.1080/15440478.2020.1745119
Google Scholar
[29]
A. Manral, P.K. Bajpai, Static and dynamic mechanical analysis of geometrically different kenaf/PLA green composite laminates, Polym. Compos. 41 (2020) 691–706.
DOI: 10.1002/pc.25399
Google Scholar