[1]
K. Pathania et al., "Green synthesis of lignin-based nanoparticles as a bio-carrier for targeted delivery in cancer therapy," Int. J. Biol. Macromol., vol. 229, no. October 2022, p.684–695, 2023.
DOI: 10.1016/j.ijbiomac.2022.12.323
Google Scholar
[2]
H. Sung et al., "Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries," CA. Cancer J. Clin., vol. 71, no. 3, 2021.
DOI: 10.3322/caac.21660
Google Scholar
[3]
F. Bray et al., "Cancer in sub-Saharan Africa in 2020: a review of current estimates of the national burden, data gaps, and future needs," Lancet Oncol., vol. 23, no. 6, p.719–728, 2022.
DOI: 10.1016/S1470-2045(22)00270-4
Google Scholar
[4]
S. Javed et al., "Combined effect of menopause age and genotype on occurrence of breast cancer risk in Pakistani population," Maturitas, vol. 69, no. 4, 2011.
DOI: 10.1016/j.maturitas.2011.05.008
Google Scholar
[5]
M. S. Aslam, S. Naveed, A. Ahmed, Z. Abbas, I. Gull, and M. A. Athar, "Side Effects of Chemotherapy in Cancer Patients and Evaluation of Patients Opinion about Starvation Based Differential Chemotherapy," J. Cancer Ther., vol. 05, no. 08, 2014.
DOI: 10.4236/jct.2014.58089
Google Scholar
[6]
A. Pearce et al., "Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study," PLoS One, vol. 12, no. 10, 2017.
DOI: 10.1371/journal.pone.0184360
Google Scholar
[7]
P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, "Gold nanoparticles in diagnostics and therapeutics for human cancer," International Journal of Molecular Sciences, vol. 19, no. 7. MDPI AG, Jul. 2018.
DOI: 10.3390/ijms19071979
Google Scholar
[8]
S. S. Salem, E. N. Hammad, A. A. Mohamed, and W. El-Dougdoug, "A Comprehensive Review of Nanomaterials: Types, Synthesis, Characterization, and Applications," Biointerface Res. Appl. Chem., vol. 13, no. 1, 2023.
DOI: 10.33263/BRIAC131.041
Google Scholar
[9]
K. Velsankar, A. Venkatesan, P. Muthumari, S. Suganya, S. Mohandoss, and S. Sudhahar, "Green inspired synthesis of ZnO nanoparticles and its characterizations with biofilm, antioxidant, anti-inflammatory, and anti-diabetic activities," J. Mol. Struct., vol. 1255, May 2022.
DOI: 10.1016/j.molstruc.2022.132420
Google Scholar
[10]
K. Velsankar, G. Parvathy, K. Sankaranarayanan, S. Mohandoss, and S. Sudhahar, "Green synthesis of silver oxide nanoparticles using Panicum miliaceum grains extract for biological applications," Adv. Powder Technol., vol. 33, no. 7, p.103645, 2022.
DOI: 10.1016/j.apt.2022.103645
Google Scholar
[11]
M. Abdassah, "Nanopartikel dengan gelasi ionik," J. Farmaka, vol. 15, no. 1, p.45–52, 2017.
Google Scholar
[12]
C. Medina, M. J. Santos-Martinez, A. Radomski, O. I. Corrigan, and M. W. Radomski, "Nanoparticles: Pharmacological and toxicological significance," Br. J. Pharmacol., vol. 150, no. 5, p.552–558, 2007.
DOI: 10.1038/sj.bjp.0707130
Google Scholar
[13]
V. J. Mohanraj and Y. Chen, "Nanoparticles - A review," Trop. J. Pharm. Res., vol. 5, no. 1, p.561–573, 2007.
DOI: 10.4314/tjpr.v5i1.14634
Google Scholar
[14]
M. Alavi, P. Kamarasu, D. Julian, and M. D. Moore, "Metal and metal oxide-based antiviral nanoparticles : Properties , mechanisms of action , and applications," Adv. Colloid Interface Sci., vol. 306, no. June, p.102726, 2022.
DOI: 10.1016/j.cis.2022.102726
Google Scholar
[15]
W. Tiyaboonchai, "Chitosan Nanoparticles : A Promising System for Drug Delivery," Naresuan Univ. J., vol. 11, no. 3, p.51–66, 2003.
Google Scholar
[16]
M. Chatterjee, N. Jaiswal, A. Hens, N. Mahata, and N. Chanda, "Development of 6-Thioguanine conjugated PLGA nanoparticles through thioester bond formation: Benefits of electrospray mediated drug encapsulation and sustained release in cancer therapeutic applications," Mater. Sci. Eng. C, vol. 114, Sep. 2020.
DOI: 10.1016/j.msec.2020.111029
Google Scholar
[17]
E. A. Worrall, A. Hamid, K. T. Mody, N. Mitter, and H. R. Pappu, "Nanotechnology for plant disease management," Agronomy, vol. 8, no. 12, p.1–24, 2018.
DOI: 10.3390/agronomy8120285
Google Scholar
[18]
H. Hermawan, D. Ramdan, and J. R. P. Djuansjah, "Metals for Biomedical Applications," Biomed. Eng. - From Theory to Appl., 2011.
DOI: 10.5772/19033
Google Scholar
[19]
C. Martinelli, C. Pucci, and G. Ciofani, "Nanostructured carriers as innovative tools for cancer diagnosis and therapy," APL Bioeng., vol. 3, no. 1, 2019.
DOI: 10.1063/1.5079943
Google Scholar
[20]
S. R. Karnati, D. Oldham, E. H. Fini, and L. Zhang, "Surface functionalization of silica nanoparticles with swine manure-derived bio-binder to enhance bitumen performance in road pavement," Constr. Build. Mater., vol. 266, p.121000, 2021.
DOI: 10.1016/j.conbuildmat.2020.121000
Google Scholar
[21]
J. H. Jin, H. Um, J. H. Oh, Y. Huh, Y. Jung, and D. Kim, "Gadolinium silicate-coated porous silicon nanoparticles as an MRI contrast agent and drug delivery carrier," Mater. Chem. Phys., vol. 287, no. May, p.126345, 2022.
DOI: 10.1016/j.matchemphys.2022.126345
Google Scholar
[22]
H. Song, Y. Zhang, Z. Zhang, S. Xiong, X. Ma, and Y. Li, "Hydroxyapatite/nell-1 nanoparticles electrospun fibers for osteoinduction in bone tissue engineering application," Int. J. Nanomedicine, vol. 16, p.4321–4332, 2021.
DOI: 10.2147/IJN.S309567
Google Scholar
[23]
X. Da, R. Li, X. Li, Y. Lu, F. Gu, and Y. Liu, "Synthesis and characterization of PEG coated hollow Fe3O4 magnetic nanoparticles as a drug carrier," Mater. Lett., vol. 309, no. November 2021, p.131357, 2022.
DOI: 10.1016/j.matlet.2021.131357
Google Scholar
[24]
C. M. Dawidczyk et al., "State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines," Journal of Controlled Release, vol. 187. Elsevier B.V., p.133–144, Aug. 2014.
DOI: 10.1016/j.jconrel.2014.05.036
Google Scholar
[25]
M. A. Mohammed, J. T. M. Syeda, K. M. Wasan, and E. K. Wasan, "An overview of chitosan nanoparticles and its application in non-parenteral drug delivery," Pharmaceutics, vol. 9, no. 4, 2017.
DOI: 10.3390/pharmaceutics9040053
Google Scholar
[26]
R. Hejazi and M. Amiji, "Chitosan-based gastrointestinal delivery systems," J. Control. Release, vol. 89, no. 2, p.151–165, 2003.
DOI: 10.1016/S0168-3659(03)00126-3
Google Scholar
[27]
N. T. Berghuis, "Sintesis kitosan-lignin dengan reaksi Mannich dan karakterisasinya," J. Kartika Kim., vol. 4, no. 1, p.33–37, 2021.
DOI: 10.26874/jkk.v4i1.77
Google Scholar
[28]
K. Luo, C. Shao, M. Chai, and J. Fan, "Level set method for atomization and evaporation simulations," Prog. Energy Combust. Sci., vol. 73, p.65–94, 2019.
DOI: 10.1016/j.pecs.2019.03.001
Google Scholar
[29]
J. Gomez-Estaca, M. P. Balaguer, R. Gavara, and P. Hernandez-Munoz, "Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin," Food Hydrocoll., vol. 28, no. 1, p.82–91, 2012.
DOI: 10.1016/j.foodhyd.2011.11.013
Google Scholar
[30]
D. N. Nguyen, C. Clasen, and G. Van den Mooter, "Pharmaceutical Applications of Electrospraying," J. Pharm. Sci., vol. 105, no. 9, p.2601–2620, 2016.
DOI: 10.1016/j.xphs.2016.04.024
Google Scholar
[31]
V. Bakola et al., "Electrospray encapsulation of antithrombotic drug into poly (L-lactic acid) nanoparticles for cardiovascular applications," Mater. Today Proc., vol. 19, p.102–109, 2019.
DOI: 10.1016/j.matpr.2019.07.664
Google Scholar
[32]
L. Winarti, "Review Artikel: PENGGUNAAN FORMULASI NANOPARTIKEL KITOSAN SEBAGAI SISTEM PENGHANTARAN GEN NON VIRAL UNTUK TERAPI GEN," Stomatognatic , vol. 8, no. 3, p.142–150, 2011.
Google Scholar
[33]
T. Dou, J. Wang, C. Han, X. Shao, J. Zhang, and W. Lu, "Cellular uptake and transport characteristics of chitosan modified nanoparticles in Caco-2 cell monolayers," Int. J. Biol. Macromol., vol. 138, p.791–799, 2019.
DOI: 10.1016/j.ijbiomac.2019.07.168
Google Scholar
[34]
E. S. Kim, D. Y. Kim, J. S. Lee, and H. G. Lee, "Quercetin delivery characteristics of chitosan nanoparticles prepared with different molecular weight polyanion cross-linkers," Carbohydr. Polym., vol. 267, no. March, p.118157, 2021.
DOI: 10.1016/j.carbpol.2021.118157
Google Scholar
[35]
S. Ramakrishna and R. Sreedar, "Electrosprayed nanoparticles for drug delivery and pharmaceutical applications," Biomatter, vol. 3, no. 3, p. e24281 1-12, 2013.
DOI: 10.4161/biom.24281
Google Scholar
[36]
A. R. Dudhani and S. L. Kosaraju, "Bioadhesive chitosan nanoparticles: Preparation and characterization," Carbohydr. Polym., vol. 81, no. 2, p.243–251, 2010.
DOI: 10.1016/j.carbpol.2010.02.026
Google Scholar
[37]
J. J. Wang et al., "Recent advances of chitosan nanoparticles as drug carriers.," Int. J. Nanomedicine, vol. 6, p.765–774, 2011.
DOI: 10.2147/ijn.s17296
Google Scholar
[38]
Y. Herdiana, N. Wathoni, S. Shamsuddin, and M. Muchtaridi, "Drug release study of the chitosan-based nanoparticles," Heliyon, vol. 8, no. 1, p. e08674, 2022.
DOI: 10.1016/j.heliyon.2021.e08674
Google Scholar
[39]
J. H. Kim et al., "Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy," Biomaterials, vol. 29, no. 12, p.1920–1930, 2008.
DOI: 10.1016/j.biomaterials.2007.12.038
Google Scholar
[40]
F. Li et al., "Anti-tumor activity of paclitaxel-loaded chitosan nanoparticles: An in vitro study," Mater. Sci. Eng. C, vol. 29, no. 8, p.2392–2397, 2009.
DOI: 10.1016/j.msec.2009.07.001
Google Scholar
[41]
M. E. Elnosary, H. A. Aboelmagd, M. A. Habaka, S. R. Salem, and E. El-naggar, "International Journal of Biological Macromolecules Synthesis of bee venom loaded chitosan nanoparticles for anti-MERS-COV and multi-drug resistance bacteria," Int. J. Biol. Macromol., no. October, 2022.
DOI: 10.1016/j.ijbiomac.2022.10.173
Google Scholar
[42]
N. H. Hoang et al., "Chitosan Nanoparticles-Based Ionic Gelation Method: A Promising Candidate for Plant Disease Management," Polymers (Basel)., vol. 14, no. 4, p.1–28, 2022.
DOI: 10.3390/polym14040662
Google Scholar
[43]
M. Balasubramaniyan, M. Santhanam, V. Vinayagam, and K. Perumal, "Immunomodulatory effects of chitosan nanoparticles as vaccine delivery agent against lymphatic filariasis through mucosal immunization," Int. J. Biol. Macromol., no. xxxx, 2022.
DOI: 10.1016/j.ijbiomac.2022.10.025
Google Scholar
[44]
V. H. B. Narayanan, A. Lewandowski, R. Durai, W. Gonciarz, P. Wawrzyniak, and M. Brzezinski, "Spray-dried tenofovir alafenamide-chitosan nanoparticles loaded oleogels as a long-acting injectable depot system of anti-HIV drug," Int. J. Biol. Macromol., vol. 222, no. May, p.473–486, 2022.
DOI: 10.1016/j.ijbiomac.2022.09.164
Google Scholar
[45]
F. Esmaeili et al., "Parameters influencing size of electrosprayed chitosan/HPMC/TPP nanoparticles containing alendronate by an artificial neural networks model," J. Electrostat., vol. 112, no. April, p.103598, 2021.
DOI: 10.1016/j.elstat.2021.103598
Google Scholar
[46]
S. Zhang and K. Kawakami, "One-step preparation of chitosan solid nanoparticles by electrospray deposition," Int. J. Pharm., vol. 397, no. 1–2, p.211–217, 2010.
DOI: 10.1016/j.ijpharm.2010.07.007
Google Scholar
[47]
A. A. Al-luhaibi and R. K. Sendi, "Synthesis, potential of hydrogen activity, biological and chemical stability of zinc oxide nanoparticle preparation by sol–gel: A review," J. Radiat. Res. Appl. Sci., vol. 15, no. 3, p.238–254, 2022.
DOI: 10.1016/j.jrras.2022.07.008
Google Scholar
[48]
M. A. Rahman et al., "Preparation of new flexible antenna based on sol–gel synthesized MgxCa(0.9-x)Zn0.10Fe2O4 nanoparticle for microwave imaging applications," J. Mater. Res. Technol., vol. 20, p.3579–3591, 2022.
DOI: 10.1016/j.jmrt.2022.08.103
Google Scholar
[49]
Q. Liu et al., "Preparation of debranched starch nanoparticles by ionic gelation for encapsulation of epigallocatechin gallate," Int. J. Biol. Macromol., vol. 161, p.481–491, 2020.
DOI: 10.1016/j.ijbiomac.2020.06.070
Google Scholar
[50]
A. Pant and J. S. Negi, "Novel controlled ionic gelation strategy for chitosan nanoparticles preparation using TPP-β-CD inclusion complex," Eur. J. Pharm. Sci., vol. 112, no. 1, p.180–185, 2018.
DOI: 10.1016/j.ejps.2017.11.020
Google Scholar
[51]
N. Chen, Y. Gan, Y. Luo, and Z. Jiang, "A review on the technology development and fundamental research of electrospray combustion of liquid fuel at small-scale," Fuel Process. Technol., vol. 234, no. May, p.107342, 2022.
DOI: 10.1016/j.fuproc.2022.107342
Google Scholar
[52]
B. Y. John Zeleny, "THE THE ELECTRICAL DISCHARGE FROM LIQUID POINTS, AND A HYDROSTATIC METHOD OF MEASURING THE ELECTRIC INTENSITY AT THEIR SURFACES. '."
DOI: 10.1103/physrev.3.69
Google Scholar
[53]
Y. A. Rezeki, "Fabrication of Mangosteen Pericarp Extract Nanoparticles as Antioxidant Using Electrospray Technique," Doctoral Dissertation, Institut Teknologi Bandung, 2020.
Google Scholar
[54]
V. Vatanpour, B. Kose-Mutlu, and I. Koyuncu, "Electrospraying technique in fabrication of separation membranes: A review," Desalination, vol. 533, no. April, p.115765, 2022.
DOI: 10.1016/j.desal.2022.115765
Google Scholar
[55]
M. Abyadeh, E. Sadroddiny, A. Ebrahimi, F. Esmaeili, F. S. Landi, and A. Amani, "Electrosprayed chitosan nanoparticles: facile and efficient approach for bacterial transformation," Int. Nano Lett., vol. 7, no. 4, p.291–295, 2017.
DOI: 10.1007/s40089-017-0224-0
Google Scholar
[56]
M. Barzegar Vishlaghi, M. Farzalipour Tabriz, and O. Mohammad Moradi, "Electrohydrodynamic atomization (EHDA) assisted wet chemical synthesis of nickel nanoparticles," Mater. Res. Bull., vol. 47, no. 7, p.1666–1669, 2012.
DOI: 10.1016/j.materresbull.2012.03.055
Google Scholar
[57]
Y. A. Rezeki, D. A. Hapidin, H. Rachmawati, M. M. Munir, and K. Khairurrijal, "Formation of electrosprayed composite nanoparticles from polyvinylpyrrolidone/mangosteen pericarp extract," Adv. Powder Technol., no. In Press, 2020.
DOI: 10.1016/j.apt.2020.02.016
Google Scholar
[58]
G. Prahasti, D. Edikresnha, Y. A. Rezeki, M. M. Munir, and K. Khairurrijal, "The Synthesis and Characterization of Composite Electrospun Fibers of Polyvinylpyrrolidone and Shell Extract of Melinjo (Gnetum gnemon L.)," Mater. Today Proc., vol. 13, p.187–192, 2019.
DOI: 10.1016/j.matpr.2019.03.212
Google Scholar
[59]
A. Jaworek, "Micro- and nanoparticle production by electrospraying," Powder Technol., vol. 176, no. 1, p.18–35, 2007.
DOI: 10.1016/j.powtec.2007.01.035
Google Scholar
[60]
C. U. Yurteri, R. P. A. Hartman, and J. C. M. Marijnissen, "Producing Pharmaceutical particles via Electrospraying with an emphasis on nano and nano structured particles - A review," KONA Powder Part. J., vol. 28, no. 28, p.91–115, 2010.
DOI: 10.14356/kona.2010010
Google Scholar
[61]
D. Mustikasari, Y. A. Rezeki, M. M. Munir, H. Rachmawati, and K. Khairurrijal, "Turmeric extract-loaded polyvinylpyrrolidone spherical submicron particles produced using electrohydrodynamic atomization: their physico-chemical properties and antioxidant activity," Mater. Res. Express, vol. 6, no. 8, p.085415, 2019.
DOI: 10.1088/2053-1591/ab272a
Google Scholar
[62]
Y. A. Rezeki, N. Wahyuni, M. M. Munir, and K. Khairurrijal, "Synthesis of polyvinylpyrrolidone/mangosteen pericarp extract (MPE) fibered particles using electrospray," J. Phys. Conf. Ser., vol. 1282, p.012033, 2019.
DOI: 10.1088/1742-6596/1282/1/012033
Google Scholar
[63]
Y. Wang et al., "Physicochemical properties of gelatin films containing tea polyphenol-loaded chitosan nanoparticles generated by electrospray," Mater. Des., vol. 185, p.108277, 2020.
DOI: 10.1016/j.matdes.2019.108277
Google Scholar
[64]
B. Arauzo, M. P. Lobera, A. Monzon, and J. Santamaria, "Dry powder formulation for pulmonary infections: Ciprofloxacin loaded in chitosan sub-micron particles generated by electrospray," Carbohydr. Polym., vol. 273, no. July, p.118543, 2021.
DOI: 10.1016/j.carbpol.2021.118543
Google Scholar
[65]
N. T. Le, J. M. Myrick, T. Seigle, P. T. Huynh, and S. Krishnan, "Mapping electrospray modes and droplet size distributions for chitosan solutions in unentangled and entangled concentration regimes," Adv. Powder Technol., vol. 29, no. 12, p.3007–3021, 2018.
DOI: 10.1016/j.apt.2018.10.006
Google Scholar
[66]
L. Shan et al., "Self-assembled green tea polyphenol-based coordination nanomaterials to improve chemotherapy efficacy by inhibition of carbonyl reductase 1," Biomaterials, vol. 210, no. April, p.62–69, 2019.
DOI: 10.1016/j.biomaterials.2019.04.032
Google Scholar
[67]
L. L. Stark, C. Tofthagen, C. Visovsky, and S. C. McMillan, "The symptom experience of patients with cancer," J. Hosp. Palliat. Nurs., vol. 14, no. 1, p.61–70, 2012.
DOI: 10.1097/NJH.0b013e318236de5c
Google Scholar
[68]
D. Ma, T. Han, M. Karimian, N. Abbasi, H. Ghaneialvar, and A. Zangeneh, "Immobilized Ag NPs on chitosan-biguanidine coated magnetic nanoparticles for synthesis of propargylamines and treatment of human lung cancer," Int. J. Biol. Macromol., vol. 165, p.767–775, 2020.
DOI: 10.1016/j.ijbiomac.2020.09.193
Google Scholar
[69]
Z. Shakeran, M. Keyhanfar, J. Varshosaz, and D. S. Sutherland, "Biodegradable nanocarriers based on chitosan-modified mesoporous silica nanoparticles for delivery of methotrexate for application in breast cancer treatment," Mater. Sci. Eng. C, vol. 118, no. June 2020, p.111526, 2021.
DOI: 10.1016/j.msec.2020.111526
Google Scholar
[70]
E. Vattemi and P. P. Claudio, "Gene therapy for lung cancer: Practice and promise," Ann. Ital. Chir., vol. 75, no. 3, p.279–289, 2004.
Google Scholar
[71]
A. Babu and R. Ramesh, "Multifaceted applications of chitosan in cancer drug delivery and therapy," Mar. Drugs, vol. 15, no. 4, p.1–19, 2017.
DOI: 10.3390/md15040096
Google Scholar
[72]
D. Victor, S. A. Ojo, M. B. Paredes-epinosa, and A. Hakami, "Biomedical Engineering Advances Derivation of composites of chitosan-nanoparticles from crustaceans source for nanomedicine : A mini review," Biomed. Eng. Adv., vol. 4, no. October, p.100058, 2022.
DOI: 10.1016/j.bea.2022.100058
Google Scholar
[73]
A. Sood, A. Gupta, R. Bharadwaj, P. Ranganath, N. Silverman, and G. Agrawal, "Biodegradable disulfide crosslinked chitosan / stearic acid nanoparticles for dual drug delivery for colorectal cancer," Carbohydr. Polym., vol. 294, no. April, p.119833, 2022.
DOI: 10.1016/j.carbpol.2022.119833
Google Scholar
[74]
H. C. Yang and M. H. Hon, "The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery," Microchem. J., vol. 92, no. 1, p.87–91, 2009.
DOI: 10.1016/j.microc.2009.02.001
Google Scholar
[75]
F. N. Sorasitthiyanukarn, C. Muangnoi, P. Ratnatilaka Na Bhuket, P. Rojsitthisak, and P. Rojsitthisak, "Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment," Mater. Sci. Eng. C, vol. 93, no. July 2017, p.178–190, 2018.
DOI: 10.1016/j.msec.2018.07.069
Google Scholar
[76]
S. J. Huang et al., "Hybrid PEGylated chitosan/PLGA nanoparticles designed as pH-responsive vehicles to promote intracellular drug delivery and cancer chemotherapy," Int. J. Biol. Macromol., vol. 210, no. March, p.565–578, 2022.
DOI: 10.1016/j.ijbiomac.2022.04.209
Google Scholar
[77]
P. Lin et al., "Jo u rn a l P," Colloids Surfaces B Biointerfaces, p.112680, 2022.
DOI: 10.1016/j.colsurfb.2022.112680
Google Scholar
[78]
S. Moradi, R. Najjar, H. Hamishehkar, and A. Lotfi, "Triple-responsive drug nanocarrier: Magnetic core-shell nanoparticles of Fe3O4@poly(N-isopropylacrylamide)-grafted-chitosan, synthesis and in vitro cytotoxicity evaluation against human lung and breast cancer cells," J. Drug Deliv. Sci. Technol., vol. 72, no. May, p.103426, 2022.
DOI: 10.1016/j.jddst.2022.103426
Google Scholar
[79]
Q. Chen et al., "Dual-pH responsive chitosan nanoparticles for improving in vivo drugs delivery and chemoresistance in breast cancer," Carbohydr. Polym., vol. 290, no. April, p.119518, 2022.
DOI: 10.1016/j.carbpol.2022.119518
Google Scholar
[80]
N. K. Al-Nemrawi, R. M. Altawabeyeh, and R. S. Darweesh, "Preparation and Characterization of Docetaxel-PLGA Nanoparticles Coated with Folic Acid-chitosan Conjugate for Cancer Treatment," J. Pharm. Sci., vol. 111, no. 2, p.485–494, 2022.
DOI: 10.1016/j.xphs.2021.10.034
Google Scholar
[81]
Z. Hongfeng, A. El-Kott, A. Ezzat Ahmed, and A. Khames, "Synthesis of chitosan-stabilized copper nanoparticles (CS-Cu NPs): Its catalytic activity for C-N and C-O cross-coupling reactions and treatment of bladder cancer," Arab. J. Chem., vol. 14, no. 10, p.103259, 2021.
DOI: 10.1016/j.arabjc.2021.103259
Google Scholar
[82]
Z. Khademi, P. Lavaee, M. Ramezani, M. Alibolandi, K. Abnous, and S. M. Taghdisi, "Co-delivery of doxorubicin and aptamer against Forkhead box M1 using chitosan-gold nanoparticles coated with nucleolin aptamer for synergistic treatment of cancer cells," Carbohydr. Polym., vol. 248, no. July, p.116735, 2020.
DOI: 10.1016/j.carbpol.2020.116735
Google Scholar
[83]
A. Sheikh, S. Md, N. A. Alhakamy, and P. Kesharwani, "Recent development of aptamer conjugated chitosan nanoparticles as cancer therapeutics," Int. J. Pharm., vol. 620, no. January, p.121751, 2022.
DOI: 10.1016/j.ijpharm.2022.121751
Google Scholar
[84]
M. J. C. Espinoza, K. S. Lin, M. T. Weng, S. C. Kunene, Y. S. Lin, and Y. T. Lin, "Synthesis and characterization of silica nanoparticles from rice ashes coated with chitosan/cancer cell membrane for hepatocellular cancer treatment," Int. J. Biol. Macromol., vol. 228, no. December 2022, p.487–497, 2023.
DOI: 10.1016/j.ijbiomac.2022.12.235
Google Scholar
[85]
K. Chaitra, K. Ravi Singh, M. S. Raghu, M. P. Sadashiva, and K. N. Prashanth, "Mucic acid cross-linked chitosan nanoparticles as a dual drug delivery system for treatment of colorectal cancer- insilico and invitro studies," Chem. Data Collect., vol. 41, no. July, p.100928, 2022.
DOI: 10.1016/j.cdc.2022.100928
Google Scholar
[86]
J. Zhao, H. Tian, F. Shang, T. Lv, D. Chen, and J. Feng, "Injectable, Anti-Cancer Drug-Eluted Chitosan Microspheres against Osteosarcoma," J. Funct. Biomater., vol. 13, no. 3, p.4–15, 2022.
DOI: 10.3390/jfb13030091
Google Scholar