Electrosprayed Chitosan Nanoparticles for Drug Carriers in Cancer Treatment - A Mini Review

Article Preview

Abstract:

Nanoparticles have emerged as promising tools for cancer treatment due to their ability to selectively deliver drugs to the tumor site while avoiding significant systemic side effects. Chitosan nanoparticles, among various types of nanoparticles, have gained significant attention due to their biocompatibility, biodegradability, and local drug delivery capacity. The electrospray technique is an efficient method for preparing chitosan nanoparticles, offering reproducibility, scalability, and high drug encapsulation efficiency. This technique has gained popularity due to its ease of use and flexibility in meeting various demands of nanoparticle production. Recent studies have investigated the potential of chitosan nanoparticles prepared by electrospray technique to encapsulate a range of drugs. The method leverages active surface absorption, binding, or complexation with drugs. For example, chitosan-based nanoparticles loaded with DOX and QUE achieved high encapsulation efficiency of 83% and effectively inhibited the growth of HCT-116 cancer cells. Similarly, SNP-CH-DOX-CM nanoparticles showed significant anti-cancer activity against HepG2 tumors. However, it should be noted that the toxicity of nanoparticles is directly related to the concentration of the active substance. Therefore, careful optimization of drug dosing is necessary to minimize any potential toxicity.

You might also be interested in these eBooks

Info:

Pages:

73-89

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Pathania et al., "Green synthesis of lignin-based nanoparticles as a bio-carrier for targeted delivery in cancer therapy," Int. J. Biol. Macromol., vol. 229, no. October 2022, p.684–695, 2023.

DOI: 10.1016/j.ijbiomac.2022.12.323

Google Scholar

[2] H. Sung et al., "Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries," CA. Cancer J. Clin., vol. 71, no. 3, 2021.

DOI: 10.3322/caac.21660

Google Scholar

[3] F. Bray et al., "Cancer in sub-Saharan Africa in 2020: a review of current estimates of the national burden, data gaps, and future needs," Lancet Oncol., vol. 23, no. 6, p.719–728, 2022.

DOI: 10.1016/S1470-2045(22)00270-4

Google Scholar

[4] S. Javed et al., "Combined effect of menopause age and genotype on occurrence of breast cancer risk in Pakistani population," Maturitas, vol. 69, no. 4, 2011.

DOI: 10.1016/j.maturitas.2011.05.008

Google Scholar

[5] M. S. Aslam, S. Naveed, A. Ahmed, Z. Abbas, I. Gull, and M. A. Athar, "Side Effects of Chemotherapy in Cancer Patients and Evaluation of Patients Opinion about Starvation Based Differential Chemotherapy," J. Cancer Ther., vol. 05, no. 08, 2014.

DOI: 10.4236/jct.2014.58089

Google Scholar

[6] A. Pearce et al., "Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study," PLoS One, vol. 12, no. 10, 2017.

DOI: 10.1371/journal.pone.0184360

Google Scholar

[7] P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, "Gold nanoparticles in diagnostics and therapeutics for human cancer," International Journal of Molecular Sciences, vol. 19, no. 7. MDPI AG, Jul. 2018.

DOI: 10.3390/ijms19071979

Google Scholar

[8] S. S. Salem, E. N. Hammad, A. A. Mohamed, and W. El-Dougdoug, "A Comprehensive Review of Nanomaterials: Types, Synthesis, Characterization, and Applications," Biointerface Res. Appl. Chem., vol. 13, no. 1, 2023.

DOI: 10.33263/BRIAC131.041

Google Scholar

[9] K. Velsankar, A. Venkatesan, P. Muthumari, S. Suganya, S. Mohandoss, and S. Sudhahar, "Green inspired synthesis of ZnO nanoparticles and its characterizations with biofilm, antioxidant, anti-inflammatory, and anti-diabetic activities," J. Mol. Struct., vol. 1255, May 2022.

DOI: 10.1016/j.molstruc.2022.132420

Google Scholar

[10] K. Velsankar, G. Parvathy, K. Sankaranarayanan, S. Mohandoss, and S. Sudhahar, "Green synthesis of silver oxide nanoparticles using Panicum miliaceum grains extract for biological applications," Adv. Powder Technol., vol. 33, no. 7, p.103645, 2022.

DOI: 10.1016/j.apt.2022.103645

Google Scholar

[11] M. Abdassah, "Nanopartikel dengan gelasi ionik," J. Farmaka, vol. 15, no. 1, p.45–52, 2017.

Google Scholar

[12] C. Medina, M. J. Santos-Martinez, A. Radomski, O. I. Corrigan, and M. W. Radomski, "Nanoparticles: Pharmacological and toxicological significance," Br. J. Pharmacol., vol. 150, no. 5, p.552–558, 2007.

DOI: 10.1038/sj.bjp.0707130

Google Scholar

[13] V. J. Mohanraj and Y. Chen, "Nanoparticles - A review," Trop. J. Pharm. Res., vol. 5, no. 1, p.561–573, 2007.

DOI: 10.4314/tjpr.v5i1.14634

Google Scholar

[14] M. Alavi, P. Kamarasu, D. Julian, and M. D. Moore, "Metal and metal oxide-based antiviral nanoparticles : Properties , mechanisms of action , and applications," Adv. Colloid Interface Sci., vol. 306, no. June, p.102726, 2022.

DOI: 10.1016/j.cis.2022.102726

Google Scholar

[15] W. Tiyaboonchai, "Chitosan Nanoparticles : A Promising System for Drug Delivery," Naresuan Univ. J., vol. 11, no. 3, p.51–66, 2003.

Google Scholar

[16] M. Chatterjee, N. Jaiswal, A. Hens, N. Mahata, and N. Chanda, "Development of 6-Thioguanine conjugated PLGA nanoparticles through thioester bond formation: Benefits of electrospray mediated drug encapsulation and sustained release in cancer therapeutic applications," Mater. Sci. Eng. C, vol. 114, Sep. 2020.

DOI: 10.1016/j.msec.2020.111029

Google Scholar

[17] E. A. Worrall, A. Hamid, K. T. Mody, N. Mitter, and H. R. Pappu, "Nanotechnology for plant disease management," Agronomy, vol. 8, no. 12, p.1–24, 2018.

DOI: 10.3390/agronomy8120285

Google Scholar

[18] H. Hermawan, D. Ramdan, and J. R. P. Djuansjah, "Metals for Biomedical Applications," Biomed. Eng. - From Theory to Appl., 2011.

DOI: 10.5772/19033

Google Scholar

[19] C. Martinelli, C. Pucci, and G. Ciofani, "Nanostructured carriers as innovative tools for cancer diagnosis and therapy," APL Bioeng., vol. 3, no. 1, 2019.

DOI: 10.1063/1.5079943

Google Scholar

[20] S. R. Karnati, D. Oldham, E. H. Fini, and L. Zhang, "Surface functionalization of silica nanoparticles with swine manure-derived bio-binder to enhance bitumen performance in road pavement," Constr. Build. Mater., vol. 266, p.121000, 2021.

DOI: 10.1016/j.conbuildmat.2020.121000

Google Scholar

[21] J. H. Jin, H. Um, J. H. Oh, Y. Huh, Y. Jung, and D. Kim, "Gadolinium silicate-coated porous silicon nanoparticles as an MRI contrast agent and drug delivery carrier," Mater. Chem. Phys., vol. 287, no. May, p.126345, 2022.

DOI: 10.1016/j.matchemphys.2022.126345

Google Scholar

[22] H. Song, Y. Zhang, Z. Zhang, S. Xiong, X. Ma, and Y. Li, "Hydroxyapatite/nell-1 nanoparticles electrospun fibers for osteoinduction in bone tissue engineering application," Int. J. Nanomedicine, vol. 16, p.4321–4332, 2021.

DOI: 10.2147/IJN.S309567

Google Scholar

[23] X. Da, R. Li, X. Li, Y. Lu, F. Gu, and Y. Liu, "Synthesis and characterization of PEG coated hollow Fe3O4 magnetic nanoparticles as a drug carrier," Mater. Lett., vol. 309, no. November 2021, p.131357, 2022.

DOI: 10.1016/j.matlet.2021.131357

Google Scholar

[24] C. M. Dawidczyk et al., "State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines," Journal of Controlled Release, vol. 187. Elsevier B.V., p.133–144, Aug. 2014.

DOI: 10.1016/j.jconrel.2014.05.036

Google Scholar

[25] M. A. Mohammed, J. T. M. Syeda, K. M. Wasan, and E. K. Wasan, "An overview of chitosan nanoparticles and its application in non-parenteral drug delivery," Pharmaceutics, vol. 9, no. 4, 2017.

DOI: 10.3390/pharmaceutics9040053

Google Scholar

[26] R. Hejazi and M. Amiji, "Chitosan-based gastrointestinal delivery systems," J. Control. Release, vol. 89, no. 2, p.151–165, 2003.

DOI: 10.1016/S0168-3659(03)00126-3

Google Scholar

[27] N. T. Berghuis, "Sintesis kitosan-lignin dengan reaksi Mannich dan karakterisasinya," J. Kartika Kim., vol. 4, no. 1, p.33–37, 2021.

DOI: 10.26874/jkk.v4i1.77

Google Scholar

[28] K. Luo, C. Shao, M. Chai, and J. Fan, "Level set method for atomization and evaporation simulations," Prog. Energy Combust. Sci., vol. 73, p.65–94, 2019.

DOI: 10.1016/j.pecs.2019.03.001

Google Scholar

[29] J. Gomez-Estaca, M. P. Balaguer, R. Gavara, and P. Hernandez-Munoz, "Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin," Food Hydrocoll., vol. 28, no. 1, p.82–91, 2012.

DOI: 10.1016/j.foodhyd.2011.11.013

Google Scholar

[30] D. N. Nguyen, C. Clasen, and G. Van den Mooter, "Pharmaceutical Applications of Electrospraying," J. Pharm. Sci., vol. 105, no. 9, p.2601–2620, 2016.

DOI: 10.1016/j.xphs.2016.04.024

Google Scholar

[31] V. Bakola et al., "Electrospray encapsulation of antithrombotic drug into poly (L-lactic acid) nanoparticles for cardiovascular applications," Mater. Today Proc., vol. 19, p.102–109, 2019.

DOI: 10.1016/j.matpr.2019.07.664

Google Scholar

[32] L. Winarti, "Review Artikel: PENGGUNAAN FORMULASI NANOPARTIKEL KITOSAN SEBAGAI SISTEM PENGHANTARAN GEN NON VIRAL UNTUK TERAPI GEN," Stomatognatic , vol. 8, no. 3, p.142–150, 2011.

Google Scholar

[33] T. Dou, J. Wang, C. Han, X. Shao, J. Zhang, and W. Lu, "Cellular uptake and transport characteristics of chitosan modified nanoparticles in Caco-2 cell monolayers," Int. J. Biol. Macromol., vol. 138, p.791–799, 2019.

DOI: 10.1016/j.ijbiomac.2019.07.168

Google Scholar

[34] E. S. Kim, D. Y. Kim, J. S. Lee, and H. G. Lee, "Quercetin delivery characteristics of chitosan nanoparticles prepared with different molecular weight polyanion cross-linkers," Carbohydr. Polym., vol. 267, no. March, p.118157, 2021.

DOI: 10.1016/j.carbpol.2021.118157

Google Scholar

[35] S. Ramakrishna and R. Sreedar, "Electrosprayed nanoparticles for drug delivery and pharmaceutical applications," Biomatter, vol. 3, no. 3, p. e24281 1-12, 2013.

DOI: 10.4161/biom.24281

Google Scholar

[36] A. R. Dudhani and S. L. Kosaraju, "Bioadhesive chitosan nanoparticles: Preparation and characterization," Carbohydr. Polym., vol. 81, no. 2, p.243–251, 2010.

DOI: 10.1016/j.carbpol.2010.02.026

Google Scholar

[37] J. J. Wang et al., "Recent advances of chitosan nanoparticles as drug carriers.," Int. J. Nanomedicine, vol. 6, p.765–774, 2011.

DOI: 10.2147/ijn.s17296

Google Scholar

[38] Y. Herdiana, N. Wathoni, S. Shamsuddin, and M. Muchtaridi, "Drug release study of the chitosan-based nanoparticles," Heliyon, vol. 8, no. 1, p. e08674, 2022.

DOI: 10.1016/j.heliyon.2021.e08674

Google Scholar

[39] J. H. Kim et al., "Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy," Biomaterials, vol. 29, no. 12, p.1920–1930, 2008.

DOI: 10.1016/j.biomaterials.2007.12.038

Google Scholar

[40] F. Li et al., "Anti-tumor activity of paclitaxel-loaded chitosan nanoparticles: An in vitro study," Mater. Sci. Eng. C, vol. 29, no. 8, p.2392–2397, 2009.

DOI: 10.1016/j.msec.2009.07.001

Google Scholar

[41] M. E. Elnosary, H. A. Aboelmagd, M. A. Habaka, S. R. Salem, and E. El-naggar, "International Journal of Biological Macromolecules Synthesis of bee venom loaded chitosan nanoparticles for anti-MERS-COV and multi-drug resistance bacteria," Int. J. Biol. Macromol., no. October, 2022.

DOI: 10.1016/j.ijbiomac.2022.10.173

Google Scholar

[42] N. H. Hoang et al., "Chitosan Nanoparticles-Based Ionic Gelation Method: A Promising Candidate for Plant Disease Management," Polymers (Basel)., vol. 14, no. 4, p.1–28, 2022.

DOI: 10.3390/polym14040662

Google Scholar

[43] M. Balasubramaniyan, M. Santhanam, V. Vinayagam, and K. Perumal, "Immunomodulatory effects of chitosan nanoparticles as vaccine delivery agent against lymphatic filariasis through mucosal immunization," Int. J. Biol. Macromol., no. xxxx, 2022.

DOI: 10.1016/j.ijbiomac.2022.10.025

Google Scholar

[44] V. H. B. Narayanan, A. Lewandowski, R. Durai, W. Gonciarz, P. Wawrzyniak, and M. Brzezinski, "Spray-dried tenofovir alafenamide-chitosan nanoparticles loaded oleogels as a long-acting injectable depot system of anti-HIV drug," Int. J. Biol. Macromol., vol. 222, no. May, p.473–486, 2022.

DOI: 10.1016/j.ijbiomac.2022.09.164

Google Scholar

[45] F. Esmaeili et al., "Parameters influencing size of electrosprayed chitosan/HPMC/TPP nanoparticles containing alendronate by an artificial neural networks model," J. Electrostat., vol. 112, no. April, p.103598, 2021.

DOI: 10.1016/j.elstat.2021.103598

Google Scholar

[46] S. Zhang and K. Kawakami, "One-step preparation of chitosan solid nanoparticles by electrospray deposition," Int. J. Pharm., vol. 397, no. 1–2, p.211–217, 2010.

DOI: 10.1016/j.ijpharm.2010.07.007

Google Scholar

[47] A. A. Al-luhaibi and R. K. Sendi, "Synthesis, potential of hydrogen activity, biological and chemical stability of zinc oxide nanoparticle preparation by sol–gel: A review," J. Radiat. Res. Appl. Sci., vol. 15, no. 3, p.238–254, 2022.

DOI: 10.1016/j.jrras.2022.07.008

Google Scholar

[48] M. A. Rahman et al., "Preparation of new flexible antenna based on sol–gel synthesized MgxCa(0.9-x)Zn0.10Fe2O4 nanoparticle for microwave imaging applications," J. Mater. Res. Technol., vol. 20, p.3579–3591, 2022.

DOI: 10.1016/j.jmrt.2022.08.103

Google Scholar

[49] Q. Liu et al., "Preparation of debranched starch nanoparticles by ionic gelation for encapsulation of epigallocatechin gallate," Int. J. Biol. Macromol., vol. 161, p.481–491, 2020.

DOI: 10.1016/j.ijbiomac.2020.06.070

Google Scholar

[50] A. Pant and J. S. Negi, "Novel controlled ionic gelation strategy for chitosan nanoparticles preparation using TPP-β-CD inclusion complex," Eur. J. Pharm. Sci., vol. 112, no. 1, p.180–185, 2018.

DOI: 10.1016/j.ejps.2017.11.020

Google Scholar

[51] N. Chen, Y. Gan, Y. Luo, and Z. Jiang, "A review on the technology development and fundamental research of electrospray combustion of liquid fuel at small-scale," Fuel Process. Technol., vol. 234, no. May, p.107342, 2022.

DOI: 10.1016/j.fuproc.2022.107342

Google Scholar

[52] B. Y. John Zeleny, "THE THE ELECTRICAL DISCHARGE FROM LIQUID POINTS, AND A HYDROSTATIC METHOD OF MEASURING THE ELECTRIC INTENSITY AT THEIR SURFACES. '."

DOI: 10.1103/physrev.3.69

Google Scholar

[53] Y. A. Rezeki, "Fabrication of Mangosteen Pericarp Extract Nanoparticles as Antioxidant Using Electrospray Technique," Doctoral Dissertation, Institut Teknologi Bandung, 2020.

Google Scholar

[54] V. Vatanpour, B. Kose-Mutlu, and I. Koyuncu, "Electrospraying technique in fabrication of separation membranes: A review," Desalination, vol. 533, no. April, p.115765, 2022.

DOI: 10.1016/j.desal.2022.115765

Google Scholar

[55] M. Abyadeh, E. Sadroddiny, A. Ebrahimi, F. Esmaeili, F. S. Landi, and A. Amani, "Electrosprayed chitosan nanoparticles: facile and efficient approach for bacterial transformation," Int. Nano Lett., vol. 7, no. 4, p.291–295, 2017.

DOI: 10.1007/s40089-017-0224-0

Google Scholar

[56] M. Barzegar Vishlaghi, M. Farzalipour Tabriz, and O. Mohammad Moradi, "Electrohydrodynamic atomization (EHDA) assisted wet chemical synthesis of nickel nanoparticles," Mater. Res. Bull., vol. 47, no. 7, p.1666–1669, 2012.

DOI: 10.1016/j.materresbull.2012.03.055

Google Scholar

[57] Y. A. Rezeki, D. A. Hapidin, H. Rachmawati, M. M. Munir, and K. Khairurrijal, "Formation of electrosprayed composite nanoparticles from polyvinylpyrrolidone/mangosteen pericarp extract," Adv. Powder Technol., no. In Press, 2020.

DOI: 10.1016/j.apt.2020.02.016

Google Scholar

[58] G. Prahasti, D. Edikresnha, Y. A. Rezeki, M. M. Munir, and K. Khairurrijal, "The Synthesis and Characterization of Composite Electrospun Fibers of Polyvinylpyrrolidone and Shell Extract of Melinjo (Gnetum gnemon L.)," Mater. Today Proc., vol. 13, p.187–192, 2019.

DOI: 10.1016/j.matpr.2019.03.212

Google Scholar

[59] A. Jaworek, "Micro- and nanoparticle production by electrospraying," Powder Technol., vol. 176, no. 1, p.18–35, 2007.

DOI: 10.1016/j.powtec.2007.01.035

Google Scholar

[60] C. U. Yurteri, R. P. A. Hartman, and J. C. M. Marijnissen, "Producing Pharmaceutical particles via Electrospraying with an emphasis on nano and nano structured particles - A review," KONA Powder Part. J., vol. 28, no. 28, p.91–115, 2010.

DOI: 10.14356/kona.2010010

Google Scholar

[61] D. Mustikasari, Y. A. Rezeki, M. M. Munir, H. Rachmawati, and K. Khairurrijal, "Turmeric extract-loaded polyvinylpyrrolidone spherical submicron particles produced using electrohydrodynamic atomization: their physico-chemical properties and antioxidant activity," Mater. Res. Express, vol. 6, no. 8, p.085415, 2019.

DOI: 10.1088/2053-1591/ab272a

Google Scholar

[62] Y. A. Rezeki, N. Wahyuni, M. M. Munir, and K. Khairurrijal, "Synthesis of polyvinylpyrrolidone/mangosteen pericarp extract (MPE) fibered particles using electrospray," J. Phys. Conf. Ser., vol. 1282, p.012033, 2019.

DOI: 10.1088/1742-6596/1282/1/012033

Google Scholar

[63] Y. Wang et al., "Physicochemical properties of gelatin films containing tea polyphenol-loaded chitosan nanoparticles generated by electrospray," Mater. Des., vol. 185, p.108277, 2020.

DOI: 10.1016/j.matdes.2019.108277

Google Scholar

[64] B. Arauzo, M. P. Lobera, A. Monzon, and J. Santamaria, "Dry powder formulation for pulmonary infections: Ciprofloxacin loaded in chitosan sub-micron particles generated by electrospray," Carbohydr. Polym., vol. 273, no. July, p.118543, 2021.

DOI: 10.1016/j.carbpol.2021.118543

Google Scholar

[65] N. T. Le, J. M. Myrick, T. Seigle, P. T. Huynh, and S. Krishnan, "Mapping electrospray modes and droplet size distributions for chitosan solutions in unentangled and entangled concentration regimes," Adv. Powder Technol., vol. 29, no. 12, p.3007–3021, 2018.

DOI: 10.1016/j.apt.2018.10.006

Google Scholar

[66] L. Shan et al., "Self-assembled green tea polyphenol-based coordination nanomaterials to improve chemotherapy efficacy by inhibition of carbonyl reductase 1," Biomaterials, vol. 210, no. April, p.62–69, 2019.

DOI: 10.1016/j.biomaterials.2019.04.032

Google Scholar

[67] L. L. Stark, C. Tofthagen, C. Visovsky, and S. C. McMillan, "The symptom experience of patients with cancer," J. Hosp. Palliat. Nurs., vol. 14, no. 1, p.61–70, 2012.

DOI: 10.1097/NJH.0b013e318236de5c

Google Scholar

[68] D. Ma, T. Han, M. Karimian, N. Abbasi, H. Ghaneialvar, and A. Zangeneh, "Immobilized Ag NPs on chitosan-biguanidine coated magnetic nanoparticles for synthesis of propargylamines and treatment of human lung cancer," Int. J. Biol. Macromol., vol. 165, p.767–775, 2020.

DOI: 10.1016/j.ijbiomac.2020.09.193

Google Scholar

[69] Z. Shakeran, M. Keyhanfar, J. Varshosaz, and D. S. Sutherland, "Biodegradable nanocarriers based on chitosan-modified mesoporous silica nanoparticles for delivery of methotrexate for application in breast cancer treatment," Mater. Sci. Eng. C, vol. 118, no. June 2020, p.111526, 2021.

DOI: 10.1016/j.msec.2020.111526

Google Scholar

[70] E. Vattemi and P. P. Claudio, "Gene therapy for lung cancer: Practice and promise," Ann. Ital. Chir., vol. 75, no. 3, p.279–289, 2004.

Google Scholar

[71] A. Babu and R. Ramesh, "Multifaceted applications of chitosan in cancer drug delivery and therapy," Mar. Drugs, vol. 15, no. 4, p.1–19, 2017.

DOI: 10.3390/md15040096

Google Scholar

[72] D. Victor, S. A. Ojo, M. B. Paredes-epinosa, and A. Hakami, "Biomedical Engineering Advances Derivation of composites of chitosan-nanoparticles from crustaceans source for nanomedicine : A mini review," Biomed. Eng. Adv., vol. 4, no. October, p.100058, 2022.

DOI: 10.1016/j.bea.2022.100058

Google Scholar

[73] A. Sood, A. Gupta, R. Bharadwaj, P. Ranganath, N. Silverman, and G. Agrawal, "Biodegradable disulfide crosslinked chitosan / stearic acid nanoparticles for dual drug delivery for colorectal cancer," Carbohydr. Polym., vol. 294, no. April, p.119833, 2022.

DOI: 10.1016/j.carbpol.2022.119833

Google Scholar

[74] H. C. Yang and M. H. Hon, "The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery," Microchem. J., vol. 92, no. 1, p.87–91, 2009.

DOI: 10.1016/j.microc.2009.02.001

Google Scholar

[75] F. N. Sorasitthiyanukarn, C. Muangnoi, P. Ratnatilaka Na Bhuket, P. Rojsitthisak, and P. Rojsitthisak, "Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment," Mater. Sci. Eng. C, vol. 93, no. July 2017, p.178–190, 2018.

DOI: 10.1016/j.msec.2018.07.069

Google Scholar

[76] S. J. Huang et al., "Hybrid PEGylated chitosan/PLGA nanoparticles designed as pH-responsive vehicles to promote intracellular drug delivery and cancer chemotherapy," Int. J. Biol. Macromol., vol. 210, no. March, p.565–578, 2022.

DOI: 10.1016/j.ijbiomac.2022.04.209

Google Scholar

[77] P. Lin et al., "Jo u rn a l P," Colloids Surfaces B Biointerfaces, p.112680, 2022.

DOI: 10.1016/j.colsurfb.2022.112680

Google Scholar

[78] S. Moradi, R. Najjar, H. Hamishehkar, and A. Lotfi, "Triple-responsive drug nanocarrier: Magnetic core-shell nanoparticles of Fe3O4@poly(N-isopropylacrylamide)-grafted-chitosan, synthesis and in vitro cytotoxicity evaluation against human lung and breast cancer cells," J. Drug Deliv. Sci. Technol., vol. 72, no. May, p.103426, 2022.

DOI: 10.1016/j.jddst.2022.103426

Google Scholar

[79] Q. Chen et al., "Dual-pH responsive chitosan nanoparticles for improving in vivo drugs delivery and chemoresistance in breast cancer," Carbohydr. Polym., vol. 290, no. April, p.119518, 2022.

DOI: 10.1016/j.carbpol.2022.119518

Google Scholar

[80] N. K. Al-Nemrawi, R. M. Altawabeyeh, and R. S. Darweesh, "Preparation and Characterization of Docetaxel-PLGA Nanoparticles Coated with Folic Acid-chitosan Conjugate for Cancer Treatment," J. Pharm. Sci., vol. 111, no. 2, p.485–494, 2022.

DOI: 10.1016/j.xphs.2021.10.034

Google Scholar

[81] Z. Hongfeng, A. El-Kott, A. Ezzat Ahmed, and A. Khames, "Synthesis of chitosan-stabilized copper nanoparticles (CS-Cu NPs): Its catalytic activity for C-N and C-O cross-coupling reactions and treatment of bladder cancer," Arab. J. Chem., vol. 14, no. 10, p.103259, 2021.

DOI: 10.1016/j.arabjc.2021.103259

Google Scholar

[82] Z. Khademi, P. Lavaee, M. Ramezani, M. Alibolandi, K. Abnous, and S. M. Taghdisi, "Co-delivery of doxorubicin and aptamer against Forkhead box M1 using chitosan-gold nanoparticles coated with nucleolin aptamer for synergistic treatment of cancer cells," Carbohydr. Polym., vol. 248, no. July, p.116735, 2020.

DOI: 10.1016/j.carbpol.2020.116735

Google Scholar

[83] A. Sheikh, S. Md, N. A. Alhakamy, and P. Kesharwani, "Recent development of aptamer conjugated chitosan nanoparticles as cancer therapeutics," Int. J. Pharm., vol. 620, no. January, p.121751, 2022.

DOI: 10.1016/j.ijpharm.2022.121751

Google Scholar

[84] M. J. C. Espinoza, K. S. Lin, M. T. Weng, S. C. Kunene, Y. S. Lin, and Y. T. Lin, "Synthesis and characterization of silica nanoparticles from rice ashes coated with chitosan/cancer cell membrane for hepatocellular cancer treatment," Int. J. Biol. Macromol., vol. 228, no. December 2022, p.487–497, 2023.

DOI: 10.1016/j.ijbiomac.2022.12.235

Google Scholar

[85] K. Chaitra, K. Ravi Singh, M. S. Raghu, M. P. Sadashiva, and K. N. Prashanth, "Mucic acid cross-linked chitosan nanoparticles as a dual drug delivery system for treatment of colorectal cancer- insilico and invitro studies," Chem. Data Collect., vol. 41, no. July, p.100928, 2022.

DOI: 10.1016/j.cdc.2022.100928

Google Scholar

[86] J. Zhao, H. Tian, F. Shang, T. Lv, D. Chen, and J. Feng, "Injectable, Anti-Cancer Drug-Eluted Chitosan Microspheres against Osteosarcoma," J. Funct. Biomater., vol. 13, no. 3, p.4–15, 2022.

DOI: 10.3390/jfb13030091

Google Scholar