[1]
J. Yang, X. Liu, Y. Fu, and Y. Song, "Recent advances of microneedles for biomedical applications: drug delivery and beyond," Acta Pharm. Sin. B, 2019, 9(3): p.469–483
DOI: 10.1016/j.apsb.2019.03.007
Google Scholar
[2]
A. R. Johnson and A. T. Procopio, "Low cost additive manufacturing of microneedle masters," 3D Print. Med., 2019, 5(1):.
DOI: 10.1186/s41205-019-0039-x
Google Scholar
[3]
Y. Chen, B. Z. Chen, Q. L. Wang, X. Jin, and X. D. Guo, "Fabrication of coated polymer microneedles for transdermal drug delivery," J. Control. Release, 2017, 265: p.14–21,.
DOI: 10.1016/j.jconrel.2017.03.383
Google Scholar
[4]
P.R. Miller, R.J. Narayan, and R. Polsky, "Microneedle-based sensors for medical diagnosis," J. Mater. Chem. B, 2016, 4(8): p.1379–1383.
DOI: 10.1039/c5tb02421h
Google Scholar
[5]
S. Duarah, M. Sharma, and J. Wen, "Recent advances in microneedle-based drug delivery: Special emphasis on its use in paediatric population," Eur. J. Pharm. Biopharm., 2019, 136: p.48–69.
DOI: 10.1016/j.ejpb.2019.01.005
Google Scholar
[6]
B. Al-Qallaf, D.B. Das, D. Mori, and Z. Cui, "Modelling transdermal delivery of high molecular weight drugs from microneedle systems," Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2007, 365(1861): p.2951–2967.
DOI: 10.1098/rsta.2007.0003
Google Scholar
[7]
J.D. Zahn, N.H. Talbot, D. Liepmann, and A.P. Pisano, "Microfabricated polysilicon microneedles for minimally invasive biomedical devices," Biomed. Microdevices, 2000, 2(4): p.295–303.
DOI: 10.1023/a:1009907306184
Google Scholar
[8]
R. Zhang, P. Zhang, C. Dalton, and G. A. Jullien, "Modeling of drug delivery into tissues with a microneedle array using mixture theory," Biomech. Model. Mechanobiol., 2010, 9(1): p.77–86.
DOI: 10.1007/s10237-009-0160-7
Google Scholar
[9]
P. Ronnander, L. Simon, and A. Koch, "Experimental and mathematical study of the transdermal delivery of sumatriptan succinate from polyvinylpyrrolidone-based microneedles," Eur. J. Pharm. Biopharm., 2020, 146: p.32–40.
DOI: 10.1016/j.ejpb.2019.11.007
Google Scholar
[10]
Y.G. Lv, J. Liu, Y. H. Gao, and B. Xu, "Modeling of transdermal drug delivery with a microneedle array," J. Micromechanics Microengineering, 2006, 16(11): p.2492–2501.
DOI: 10.1088/0960-1317/16/11/034
Google Scholar
[11]
P. Ronnander, L. Simon, and A. Koch, "Experimental and mathematical study of the transdermal delivery of sumatriptan succinate from polyvinylpyrrolidone-based microneedles," Eur. J. Pharm. Biopharm., 2020, 146: p.32–40.
DOI: 10.1016/j.ejpb.2019.11.007
Google Scholar
[12]
D.A. Castilla-Casadiego et al., "Design, characterization, and modeling of a chitosan microneedle patch for transdermal delivery of meloxicam as a pain management strategy for use in cattle," Mater. Sci. Eng. C, 2021, 118: p.111544.
DOI: 10.1016/j.msec.2020.111544
Google Scholar
[13]
M.R. Sarabi, A. Ahmadpour, A. K. Yetisen, and S. Tasoglu, "Finger-actuated microneedle array for sampling body fluids," Appl. Sci., 2021, 11(12): p.1–16.
DOI: 10.3390/app11125329
Google Scholar
[14]
P.P. Samant and M. R. Prausnitz, "Mechanisms of sampling interstitial fluid from skin using a microneedle patch," Proc. Natl. Acad. Sci. U. S. A., 2018, 115(18): p.4583–4588.
DOI: 10.1073/pnas.1716772115
Google Scholar
[15]
A.V. Ganesan et al., "Analysis of MEMS-Based Microneedles for Blood Monitoring," Bionanoscience, 2014, 4(2): p.128–135.
Google Scholar
[16]
S. Madhihah, A. Malik, I. Abdullah, and S. M. Mahali, "Analytic Solution for Hollow Microneedles Assisted Transdermal Drug Delivery Model," Int. J. Appl. Eng. Res., 2018, 13(1): p.737–742.
Google Scholar
[17]
R. Yang, M. Zhang, and T.J. Tarn, "Dynamic modeling and control of a micro-needle integrated piezoelectric micro-pump for diabetes care," 2006 6th IEEE Conf. Nanotechnology, IEEE-NANO 2006, 1(c): p.146–149.
DOI: 10.1109/nano.2006.247592
Google Scholar
[18]
S. Chavoshi et al., "Mathematical modeling of drug release from biodegradable polymeric microneedles," Bio-Design Manuf., 2019, 2(2): p.96–107.
DOI: 10.1007/s42242-019-00041-y
Google Scholar
[19]
K. S. Kim, K. Ita, and L. Simon, "Modelling of dissolving microneedles for transdermal drug delivery: Theoretical and experimental aspects," Eur. J. Pharm. Sci., 2015, 68: p.137–143.
DOI: 10.1016/j.ejps.2014.12.008
Google Scholar
[20]
O. Olatunji, "Modelling and optimization of microneedles for transdermal drug delivery," Loughbrgh. Univ. Institutional Repos., 2011, p.230.
Google Scholar
[21]
B. Al-Qallaf and D. B. Das, "Optimizing microneedle arrays to increase skin permeability for transdermal drug delivery," Ann. N. Y. Acad. Sci., 2009, 1161(1): p.83–94.
DOI: 10.1111/j.1749-6632.2009.04083.x
Google Scholar
[22]
X. Chen, J. X. Lou, and Y. Dai, "Differential transform method for the brooks-Corey model," Appl. Mech. Mater., 2014, 501–504: p.2520–2523.
DOI: 10.4028/www.scientific.net/amm.501-504.2520
Google Scholar
[23]
M. Garg, P. Manohar, and S. L. Kalla, "Generalized differential transform method to space-time fractional telegraph equation," Int. J. Differ. Equations, 2011, 2011:.
DOI: 10.1155/2011/548982
Google Scholar
[24]
M.L. Olaosebikan, A.A. Victor, O.A. Uwaheren, T.A. Ayoola, and M.O. Ajisope, "Solution of an SIR Infectious Disease Model by Differential Transform Method," 2021, 9(3): pp.312-318.
Google Scholar
[25]
P.K. Singh and P. Sharma, "A Comparative Study of Fluid Flow in Hemodialyzer using Differential Transform Method," Macromol. Symp., 2021, 397(1): p.1–9.
DOI: 10.1002/masy.202000338
Google Scholar
[26]
S. Nourazar and A. Mirzabeigy, "Approximate solution for nonlinear Duffing oscillator with damping effect using the modified differential transform method," Sci. Iran., 2013, 20(2): p.364–368.
Google Scholar
[27]
O. Adeleye, A. Yinusa, and S. Konigbagbe, "Nonlinear Steady State and Dynamic Response Analysis of Focused Ultrasound Actuated Smart Biomaterials." Appl. Mech. Mater., 2022, 906: pp.1-21
DOI: 10.4028/p-6fg7f8
Google Scholar
[28]
S. Kusama, K. Sato, Y. Matsui, Transdermal electroosmotic flow generated by a porous microneedle array patch. Nat Commun 12, 658 (2021). https://doi.org/10.1038/s41467- 021-20948-4].
DOI: 10.1038/s41467-021-20948-4
Google Scholar