[1]
M. J. Jamal, S. J. Hamandi, and M. N. Arbilei, "Evaluation of Novel Prosthesis Implant Adapter by Finite Element Analysis," Journal of Biomimetics, Biomaterials and Biomedical Engineering, vol. 61, pp.109-120, 2023.
DOI: 10.4028/p-n2yzeb
Google Scholar
[2]
N. Mamatmusaeva, U. Tillaeva, B. Daminov, S. Saidkhodjaeva, M. Iskandarov, O. Malyugina, I. Kuznecov, and A. Ponomarev, "Biocompatibility as an important component of dental materials," Journal of Biomimetics, Biomaterials and Biomedical Engineering, vol. 53, pp.31-39, 2021.
DOI: 10.4028/www.scientific.net/jbbbe.53.31
Google Scholar
[3]
Y. Liu, B. Rath, M. Tingart, and J. Eschweiler, "Role of implants surface modification in osseointegration: A systematic review," Journal of Biomedical Materials Research Part A, vol. 108, no. 3, pp.470-484, 2020.
DOI: 10.1002/jbm.a.36829
Google Scholar
[4]
S. S. Pimpale, M. S. Deshmukh, R. T. Shelke, and D. S. Deshmukh, "Biomaterial Properties of Femur Implant on Acetabulum Erosion: A Review," Journal of Biomimetics, Biomaterials and Biomedical Engineering, vol. 51, pp.39-62, 2021.
DOI: 10.4028/www.scientific.net/jbbbe.51.39
Google Scholar
[5]
R. Agarwal, and A. J. García, "Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair," Advanced drug delivery reviews, vol. 94, pp.53-62, 2015.
DOI: 10.1016/j.addr.2015.03.013
Google Scholar
[6]
N. A. Marwan, M. A. Saad, J. M. Hamed, and M. Al_Hifadhi, "Effects of Heat Treatment on the Corrosion and Mechanical Properties of Stainless Steel 316L as Used in Biomedical Applications." p.012142.
DOI: 10.1088/1757-899x/1067/1/012142
Google Scholar
[7]
O. Y. Alothman, H. Fouad, S. Al-Zahrani, A. Eshra, M. F. Al Rez, and S. Ansari, "Thermal, creep-recovery and viscoelastic behavior of high density polyethylene/hydroxyapatite nano particles for bone substitutes: effects of gamma radiation," Biomedical engineering online, vol. 13, no. 1, pp.1-15, 2014.
DOI: 10.1186/1475-925x-13-125
Google Scholar
[8]
S. J. Owonubi, S. C. Agwuncha, V. O. Fasiku, E. Mukwevho, B. A. Aderibigbe, E. R. Sadiku, and D. Bezuidenhout, "Biomedical applications of polyolefins," Polyolefin Fibres, pp.517-538: Elsevier, 2017.
DOI: 10.1016/b978-0-08-101132-4.00017-5
Google Scholar
[9]
J. W. Durham III, S. A. Montelongo, J. L. Ong, T. Guda, M. J. Allen, and A. Rabiei, "Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model," Materials Science and Engineering: C, vol. 68, pp.723-731, 2016.
DOI: 10.1016/j.msec.2016.06.049
Google Scholar
[10]
D. Shekhawat, A. Singh, M. Banerjee, T. Singh, and A. Patnaik, "Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties," Ceramics International, vol. 47, no. 3, pp.3013-3030, 2021.
DOI: 10.1016/j.ceramint.2020.09.214
Google Scholar
[11]
M. Shadravanan, M. Latifi, Z. Vojdani, and T. Talaei-Khozani, "Fabrication of pentoxifylline-loaded hydroxyapatite/alginate scaffold for bone tissue engineering." pp.25-40.
DOI: 10.4028/www.scientific.net/jbbbe.47.25
Google Scholar
[12]
G. O. Aspinall, The polysaccharides: Academic press, 2014.
Google Scholar
[13]
M. Magid, and L. Q. Al-Karam, "Non-covalent functionalization of CNTs with Chitosan for drug delivery system." p.012038.
DOI: 10.1088/1742-6596/2114/1/012038
Google Scholar
[14]
N. Mati-Baouche, P.-H. Elchinger, H. de Baynast, G. Pierre, C. Delattre, and P. Michaud, "Chitosan as an adhesive," European Polymer Journal, vol. 60, pp.198-212, 2014.
DOI: 10.1016/j.eurpolymj.2014.09.008
Google Scholar
[15]
C. Zhang, D. Hui, C. Du, H. Sun, W. Peng, X. Pu, Z. Li, J. Sun, and C. Zhou, "Preparation and application of chitosan biomaterials in dentistry," International Journal of Biological Macromolecules, vol. 167, pp.1198-1210, 2021.
DOI: 10.1016/j.ijbiomac.2020.11.073
Google Scholar
[16]
A. Velásquez, and A. Arnedo, "Growth and characterization of magnetite-maghemite thin films by the dip coating method," Hyperfine Interactions, vol. 238, no. 1, pp.1-12, 2017.
DOI: 10.1007/s10751-017-1397-7
Google Scholar
[17]
X. Tang, and X. Yan, "Dip-coating for fibrous materials: mechanism, methods and applications," Journal of Sol-Gel Science and Technology, vol. 81, pp.378-404, 2017.
DOI: 10.1007/s10971-016-4197-7
Google Scholar
[18]
K. A. Kravanja, and M. Finšgar, "Analytical Techniques for the Characterization of Bioactive Coatings for Orthopaedic Implants," Biomedicines, vol. 9, no. 12, p.1936, 2021.
DOI: 10.3390/biomedicines9121936
Google Scholar
[19]
C. Finger, M. Stiesch, M. Eisenburger, B. Breidenstein, S. Busemann, and A. Greuling, "Effect of sandblasting on the surface roughness and residual stress of 3Y-TZP (zirconia)," SN Applied Sciences, vol. 2, no. 10, pp.1-8, 2020.
DOI: 10.1007/s42452-020-03492-6
Google Scholar
[20]
S. Hussain, Z. A. Shah, K. Sabiruddin, and A. K. Keshri, "Characterization and tribological behaviour of Indian clam seashell-derived hydroxyapatite coating applied on titanium alloy by plasma spray technique," Journal of the Mechanical Behavior of Biomedical Materials, vol. 137, p.105550, 2023.
DOI: 10.1016/j.jmbbm.2022.105550
Google Scholar
[21]
R. Barabás, M. Czikó, I. Dékány, L. Bizo, and E. S. Bogya, "Comparative study of particle size analysis of hydroxyapatite-based nanomaterials," Chemical Papers, vol. 67, no. 11, pp.1414-1423, 2013.
DOI: 10.2478/s11696-013-0409-6
Google Scholar
[22]
D. Boudemagh, P. Venturini, S. Fleutot, and F. Cleymand, "Elaboration of hydroxyapatite nanoparticles and chitosan/hydroxyapatite composites: a present status," Polymer Bulletin, vol. 76, no. 5, pp.2621-2653, 2019.
DOI: 10.1007/s00289-018-2483-y
Google Scholar
[23]
F. Jordana, L. Susbielles, and J. Colat-Parros, "Periimplantitis and implant body roughness: a systematic review of literature," Implant Dentistry, vol. 27, no. 6, pp.672-681, 2018.
DOI: 10.1097/id.0000000000000834
Google Scholar
[24]
S. Louihi, H. Noukrati, Y. Tamraoui, H. A. Said, B. Manoun, and A. Barroug, "Adsorption and structural properties of hydroxy-and new lacunar apatites," Journal of Molecular Structure, vol. 1202, p.127225, 2020.
DOI: 10.1016/j.molstruc.2019.127225
Google Scholar
[25]
H. A. Said, H. Noukrati, H. Ben Youcef, A. Bayoussef, H. Oudadesse, and A. Barroug, "Mechanical behavior of hydroxyapatite-chitosan composite: Effect of processing parameters," Minerals, vol. 11, no. 2, p.213, 2021.
DOI: 10.3390/min11020213
Google Scholar
[26]
O. Saleem, M. Wahaj, M. A. Akhtar, and M. A. Ur Rehman, "Fabrication and characterization of Ag–Sr-substituted hydroxyapatite/chitosan coatings deposited via electrophoretic deposition: a design of experiment study," ACS omega, vol. 5, no. 36, pp.22984-22992, 2020.
DOI: 10.1021/acsomega.0c02582
Google Scholar
[27]
Q. Chen, L. Cordero-Arias, J. A. Roether, S. Cabanas-Polo, S. Virtanen, and A. R. Boccaccini, "Alginate/Bioglass® composite coatings on stainless steel deposited by direct current and alternating current electrophoretic deposition," Surface and Coatings Technology, vol. 233, pp.49-56, 2013.
DOI: 10.1016/j.surfcoat.2013.01.042
Google Scholar
[28]
A. Vital-Juarez, L. Roffi, J.-M. Desmarres, and A. Devos, "Picosecond acoustics versus tape adhesion test: Confrontation on a series of similar samples with a variable adhesion," Surface and Coatings Technology, vol. 448, p.128926, 2022.
DOI: 10.1016/j.surfcoat.2022.128926
Google Scholar
[29]
D. Possley, E. Baker, K. Baker, and J. G. Khalil, "Surface Modification Techniques to Enhance Osseointegration of Spinal Implants," JAAOS-Journal of the American Academy of Orthopaedic Surgeons, vol. 28, no. 22, pp. e988-e994, 2020.
DOI: 10.5435/jaaos-d-17-00645
Google Scholar
[30]
R.-J. Lu, X. Wang, H.-X. He, L.-L. E, Y. Li, G.-L. Zhang, C.-J. Li, C.-Y. Ning, and H.-C. Liu, "Tantalum-incorporated hydroxyapatite coating on titanium implants: its mechanical and in vitro osteogenic properties," Journal of Materials Science: Materials in Medicine, vol. 30, pp.1-14, 2019.
DOI: 10.1007/s10856-019-6308-9
Google Scholar
[31]
M. J. Mohammed, S. J. Hamandi, and M. N. Arbilei, "A Osseointegration in Rabbit Model Using PEEK Coated by HA: Comparative Study for Histological and X-ray," Journal La Multiapp, vol. 3, no. 5, pp.235-240, 2022.
DOI: 10.37899/journallamultiapp.v3i5.710
Google Scholar