Utilize Chitosan to Coat Hydroxyapatite on Polymer

Article Preview

Abstract:

Biocompatible bone implants are often proposed to improve osseointegration such as metal or polymer. Calcium hydroxyapatite Ca10(PO4)6-OH2, HA is the primary inorganic component of human bone. Hydroxyapatite and polymer are biocompatible to the human body and help to increase bone growth. Increasing osseointegration by application of coating polymer on ceramic using the dip coating method is a challenge in itself for the success of the process of coating polymeric materials on ceramic materials using the previous method. This research aims to establish a new interface for promoting osseointegration. This interface between the polymeric part and the bone tissue to overcome the problems and failures that occur in the metal limbs implanted in the amputees. As a result of its rejection by the cells of the living body or the lack of good cohesion between the implant and the place of contact. In this work, coat PEEK plastic material coated with an active biocompatible material (Hydroxyapatite). The polymeric parts that implant inside the bone will be used as an anchor for the metallic screw that is used for bone succession or artificial limb. This research is one of a series of investigations that enhance bone osseointegration in the simplest and most efficient method. The dipping method is used to create adhesive between ceramic and polymer (polyether ether ketone) depending on the chitosan material. Tape tests showed that there was good adherence between the HA and PEEK surfaces.

You might also be interested in these eBooks

Info:

Pages:

1-10

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. J. Jamal, S. J. Hamandi, and M. N. Arbilei, "Evaluation of Novel Prosthesis Implant Adapter by Finite Element Analysis," Journal of Biomimetics, Biomaterials and Biomedical Engineering, vol. 61, pp.109-120, 2023.

DOI: 10.4028/p-n2yzeb

Google Scholar

[2] N. Mamatmusaeva, U. Tillaeva, B. Daminov, S. Saidkhodjaeva, M. Iskandarov, O. Malyugina, I. Kuznecov, and A. Ponomarev, "Biocompatibility as an important component of dental materials," Journal of Biomimetics, Biomaterials and Biomedical Engineering, vol. 53, pp.31-39, 2021.

DOI: 10.4028/www.scientific.net/jbbbe.53.31

Google Scholar

[3] Y. Liu, B. Rath, M. Tingart, and J. Eschweiler, "Role of implants surface modification in osseointegration: A systematic review," Journal of Biomedical Materials Research Part A, vol. 108, no. 3, pp.470-484, 2020.

DOI: 10.1002/jbm.a.36829

Google Scholar

[4] S. S. Pimpale, M. S. Deshmukh, R. T. Shelke, and D. S. Deshmukh, "Biomaterial Properties of Femur Implant on Acetabulum Erosion: A Review," Journal of Biomimetics, Biomaterials and Biomedical Engineering, vol. 51, pp.39-62, 2021.

DOI: 10.4028/www.scientific.net/jbbbe.51.39

Google Scholar

[5] R. Agarwal, and A. J. García, "Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair," Advanced drug delivery reviews, vol. 94, pp.53-62, 2015.

DOI: 10.1016/j.addr.2015.03.013

Google Scholar

[6] N. A. Marwan, M. A. Saad, J. M. Hamed, and M. Al_Hifadhi, "Effects of Heat Treatment on the Corrosion and Mechanical Properties of Stainless Steel 316L as Used in Biomedical Applications." p.012142.

DOI: 10.1088/1757-899x/1067/1/012142

Google Scholar

[7] O. Y. Alothman, H. Fouad, S. Al-Zahrani, A. Eshra, M. F. Al Rez, and S. Ansari, "Thermal, creep-recovery and viscoelastic behavior of high density polyethylene/hydroxyapatite nano particles for bone substitutes: effects of gamma radiation," Biomedical engineering online, vol. 13, no. 1, pp.1-15, 2014.

DOI: 10.1186/1475-925x-13-125

Google Scholar

[8] S. J. Owonubi, S. C. Agwuncha, V. O. Fasiku, E. Mukwevho, B. A. Aderibigbe, E. R. Sadiku, and D. Bezuidenhout, "Biomedical applications of polyolefins," Polyolefin Fibres, pp.517-538: Elsevier, 2017.

DOI: 10.1016/b978-0-08-101132-4.00017-5

Google Scholar

[9] J. W. Durham III, S. A. Montelongo, J. L. Ong, T. Guda, M. J. Allen, and A. Rabiei, "Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model," Materials Science and Engineering: C, vol. 68, pp.723-731, 2016.

DOI: 10.1016/j.msec.2016.06.049

Google Scholar

[10] D. Shekhawat, A. Singh, M. Banerjee, T. Singh, and A. Patnaik, "Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties," Ceramics International, vol. 47, no. 3, pp.3013-3030, 2021.

DOI: 10.1016/j.ceramint.2020.09.214

Google Scholar

[11] M. Shadravanan, M. Latifi, Z. Vojdani, and T. Talaei-Khozani, "Fabrication of pentoxifylline-loaded hydroxyapatite/alginate scaffold for bone tissue engineering." pp.25-40.

DOI: 10.4028/www.scientific.net/jbbbe.47.25

Google Scholar

[12] G. O. Aspinall, The polysaccharides: Academic press, 2014.

Google Scholar

[13] M. Magid, and L. Q. Al-Karam, "Non-covalent functionalization of CNTs with Chitosan for drug delivery system." p.012038.

DOI: 10.1088/1742-6596/2114/1/012038

Google Scholar

[14] N. Mati-Baouche, P.-H. Elchinger, H. de Baynast, G. Pierre, C. Delattre, and P. Michaud, "Chitosan as an adhesive," European Polymer Journal, vol. 60, pp.198-212, 2014.

DOI: 10.1016/j.eurpolymj.2014.09.008

Google Scholar

[15] C. Zhang, D. Hui, C. Du, H. Sun, W. Peng, X. Pu, Z. Li, J. Sun, and C. Zhou, "Preparation and application of chitosan biomaterials in dentistry," International Journal of Biological Macromolecules, vol. 167, pp.1198-1210, 2021.

DOI: 10.1016/j.ijbiomac.2020.11.073

Google Scholar

[16] A. Velásquez, and A. Arnedo, "Growth and characterization of magnetite-maghemite thin films by the dip coating method," Hyperfine Interactions, vol. 238, no. 1, pp.1-12, 2017.

DOI: 10.1007/s10751-017-1397-7

Google Scholar

[17] X. Tang, and X. Yan, "Dip-coating for fibrous materials: mechanism, methods and applications," Journal of Sol-Gel Science and Technology, vol. 81, pp.378-404, 2017.

DOI: 10.1007/s10971-016-4197-7

Google Scholar

[18] K. A. Kravanja, and M. Finšgar, "Analytical Techniques for the Characterization of Bioactive Coatings for Orthopaedic Implants," Biomedicines, vol. 9, no. 12, p.1936, 2021.

DOI: 10.3390/biomedicines9121936

Google Scholar

[19] C. Finger, M. Stiesch, M. Eisenburger, B. Breidenstein, S. Busemann, and A. Greuling, "Effect of sandblasting on the surface roughness and residual stress of 3Y-TZP (zirconia)," SN Applied Sciences, vol. 2, no. 10, pp.1-8, 2020.

DOI: 10.1007/s42452-020-03492-6

Google Scholar

[20] S. Hussain, Z. A. Shah, K. Sabiruddin, and A. K. Keshri, "Characterization and tribological behaviour of Indian clam seashell-derived hydroxyapatite coating applied on titanium alloy by plasma spray technique," Journal of the Mechanical Behavior of Biomedical Materials, vol. 137, p.105550, 2023.

DOI: 10.1016/j.jmbbm.2022.105550

Google Scholar

[21] R. Barabás, M. Czikó, I. Dékány, L. Bizo, and E. S. Bogya, "Comparative study of particle size analysis of hydroxyapatite-based nanomaterials," Chemical Papers, vol. 67, no. 11, pp.1414-1423, 2013.

DOI: 10.2478/s11696-013-0409-6

Google Scholar

[22] D. Boudemagh, P. Venturini, S. Fleutot, and F. Cleymand, "Elaboration of hydroxyapatite nanoparticles and chitosan/hydroxyapatite composites: a present status," Polymer Bulletin, vol. 76, no. 5, pp.2621-2653, 2019.

DOI: 10.1007/s00289-018-2483-y

Google Scholar

[23] F. Jordana, L. Susbielles, and J. Colat-Parros, "Periimplantitis and implant body roughness: a systematic review of literature," Implant Dentistry, vol. 27, no. 6, pp.672-681, 2018.

DOI: 10.1097/id.0000000000000834

Google Scholar

[24] S. Louihi, H. Noukrati, Y. Tamraoui, H. A. Said, B. Manoun, and A. Barroug, "Adsorption and structural properties of hydroxy-and new lacunar apatites," Journal of Molecular Structure, vol. 1202, p.127225, 2020.

DOI: 10.1016/j.molstruc.2019.127225

Google Scholar

[25] H. A. Said, H. Noukrati, H. Ben Youcef, A. Bayoussef, H. Oudadesse, and A. Barroug, "Mechanical behavior of hydroxyapatite-chitosan composite: Effect of processing parameters," Minerals, vol. 11, no. 2, p.213, 2021.

DOI: 10.3390/min11020213

Google Scholar

[26] O. Saleem, M. Wahaj, M. A. Akhtar, and M. A. Ur Rehman, "Fabrication and characterization of Ag–Sr-substituted hydroxyapatite/chitosan coatings deposited via electrophoretic deposition: a design of experiment study," ACS omega, vol. 5, no. 36, pp.22984-22992, 2020.

DOI: 10.1021/acsomega.0c02582

Google Scholar

[27] Q. Chen, L. Cordero-Arias, J. A. Roether, S. Cabanas-Polo, S. Virtanen, and A. R. Boccaccini, "Alginate/Bioglass® composite coatings on stainless steel deposited by direct current and alternating current electrophoretic deposition," Surface and Coatings Technology, vol. 233, pp.49-56, 2013.

DOI: 10.1016/j.surfcoat.2013.01.042

Google Scholar

[28] A. Vital-Juarez, L. Roffi, J.-M. Desmarres, and A. Devos, "Picosecond acoustics versus tape adhesion test: Confrontation on a series of similar samples with a variable adhesion," Surface and Coatings Technology, vol. 448, p.128926, 2022.

DOI: 10.1016/j.surfcoat.2022.128926

Google Scholar

[29] D. Possley, E. Baker, K. Baker, and J. G. Khalil, "Surface Modification Techniques to Enhance Osseointegration of Spinal Implants," JAAOS-Journal of the American Academy of Orthopaedic Surgeons, vol. 28, no. 22, pp. e988-e994, 2020.

DOI: 10.5435/jaaos-d-17-00645

Google Scholar

[30] R.-J. Lu, X. Wang, H.-X. He, L.-L. E, Y. Li, G.-L. Zhang, C.-J. Li, C.-Y. Ning, and H.-C. Liu, "Tantalum-incorporated hydroxyapatite coating on titanium implants: its mechanical and in vitro osteogenic properties," Journal of Materials Science: Materials in Medicine, vol. 30, pp.1-14, 2019.

DOI: 10.1007/s10856-019-6308-9

Google Scholar

[31] M. J. Mohammed, S. J. Hamandi, and M. N. Arbilei, "A Osseointegration in Rabbit Model Using PEEK Coated by HA: Comparative Study for Histological and X-ray," Journal La Multiapp, vol. 3, no. 5, pp.235-240, 2022.

DOI: 10.37899/journallamultiapp.v3i5.710

Google Scholar