Influence of Zinc Salt Types on Physicochemical and Antimicrobial Properties of Zinc Stannate Nanostructures

Article Preview

Abstract:

Zinc stannate (ZTO) NPs were prepared hydrothermal for 20 hours at 200 ᵒC. Structural, morphological, and optical properties of the ZTO NPs were studied for different zinc salt types (ZnSO4.7H2O, Zn(CH3COO)2.2H2O, and Zn (NO3)2•6H2O). The X-ray diffraction studies showed the crystalline nature with a spinel crystal structure of the ZTO nanostructure. FE-SEM image showed spherical morphology with the formation of a network of aggregates. The transmittance spectra were recorded at wavelengths ranging from 200 nm to 1200 nm. In particular, their optical band gap energies were 3.65, 3.85, and 3.8 eV for three zinc salts of ZTO (ZnSO4.7H2O, Zn(CH3COO)2.2H2O, Zn (NO3)2.6H2O), respectively. The MIC showed the ZTO NPs for zinc salt ZnSO4.7H2O in Volumetric dilution 3.125% and 12.5 was more effective against Escherichia coli and Staphylococcus aureus from another zinc salt of ZTO NPs. Inhibition Zone assessed ZTO NPs' antibacterial efficacy against Staphylococcus aureus and Escherichia coli. With three concentrations of ZTO, the test showed that ZTO NPs have a stronger antibacterial activity against gram-positive bacteria than gram-negative bacteria. The antibacterial activity of zinc salt ZnSO4.7H2O was found to be 32 against Escherichia coli and 19 nm against Staphylococcus aurous, it was more effective than other zinc salt of ZTO NPs.

You might also be interested in these eBooks

Info:

Pages:

21-35

Citation:

Online since:

January 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Dinesh, S. Barathan, V.K. Premkumar, G. Sivakumar, N. Anandan, Hydrothermal synthesis of zinc stannate (Zn2SnO4) nanoparticles and its application towards photocatalytic and antibacterial activity, J. Mater. Sci.: Mater. Electron. 27 (2016) 9668-9675

DOI: 10.1007/s10854-016-5027-y

Google Scholar

[2] M. Jaculine, C.J. Raj, S.J. Das, Hydrothermal synthesis of highly crystalline Zn2SnO4 nanoflowers and their optical properties, J. Alloys Compd. 577 (2013) 131-137

DOI: 10.1016/j.jallcom.2013.04.158

Google Scholar

[3] Z. Chen, M. Cao, C. Hu, Novel Zn2SnO4 hierarchical nanostructures and their gas sensing properties toward ethanol, J. Phys. Chem. C 115(13) (2011) 5522-5529

DOI: 10.1021/jp111785t

Google Scholar

[4] A. Rong, et al., Hydrothermal synthesis of (Zn2SnO4) as anode materials for Li-ion battery, J. Phys. Chem. B 110(30) (2006) 14754-14760

DOI: 10.1021/jp062875r

Google Scholar

[5] K. Kim, et al., Preparation and electrochemical properties of surface-charge-modified Zn2SnO4 nanoparticles as anodes for lithium-ion batteries, Electrochim. Acta 76 (2012) 192-200

DOI: 10.1016/j.electacta.2012.04.121

Google Scholar

[6] Y. Li, A. Pang, X. Zheng, M. Wei, CdS quantum-dot-sensitized Zn2SnO4 solar cell, Electrochim. Acta 56(13) (2011) 4902-4906

DOI: 10.1016/j.electacta.2011.02.071

Google Scholar

[7] C. Chen, et al., Efficiency enhanced dye-sensitized Zn2SnO4 solar cells using a facile chemical-bath deposition method, New J. Chem. 38(9) (2014) 4465-4470

DOI: 10.1039/C4NJ00729H

Google Scholar

[8] M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E. K. Girija, P. D. Pathinettam, ZnO/SnO2/(Zn2SnO4 ) nanocomposite: preparation and characterization for gas sensing applications, Nanosistemy: fizika, chimija, matematika 7(4) (2016) 707-710

DOI: 10.17586/2220-8054-2016-7-4-707-710

Google Scholar

[9] L.T.T. Vien, N. Tu, D.X. Viet, D.D. Anh, D.H. Nguyen, P.T.H. Huy, Mn²⁺ doped Zn2SnO4 green phosphor for WLED applications, J. Lumin. 227 (2020) 117522

DOI: 10.1016/j.jlumin.2020.117522

Google Scholar

[10] M.A. Alpuche-Aviles, Y. Wu, Photoelectrochemical study of the band structure of Zn2SnO4 prepared by the hydrothermal method, J. Am. Chem. Soc. 131(9) (2009) 3216-3224

DOI: 10.1021/ja806719x

Google Scholar

[11] J.E. Jeronsia, L.A. Joseph, M.M. Jaculine, P.A. Vinosha, S.J. Das, Hydrothermal synthesis of zinc stannate nanoparticles for antibacterial applications, J. Taibah Univ. Sci. 10(4) (2016) 601-606

DOI: 10.1016/j.jtusci.2015.12.003

Google Scholar

[12] S. Kumar, K.K. Sivakumar, K.S. Mohammed, T.G.G. Ofgaa, Antibacterial and optical activities of microwave aided Zn2SnO4 nanorods, J. Nano- Electron. Phys. 13(3) (2021) 03002

DOI: 10.21272/jnep.13(3).03002

Google Scholar

[13] A.I. Alghamdi, I.M. Ababutain, N.H. Alonizan, M. Hjiri, A.H. Hammad, B. Zerrad, M.S. Aida, Antibacterial activity of stannate M2SnO4 (M = Co, Cu, Mg, Ni, and Zn) nanoparticles prepared by hydrothermal, Appl. Nanosci. 12(5) (2022) 1601-1611

DOI: 10.1007/s13204-021-02274-9

Google Scholar

[14] R.K. Hameed, S.M. AL-Jawad, N.J. Imran, Structural, morphological, and optical properties of Co and (Co, Fe) co-doped Zn2SnO4 nanoparticles prepared by hydrothermal method for antibacterial activity, Opt. Quantum Electron. 56(7) (2024) 1122

DOI: 10.1007/s11082-024-07043-w

Google Scholar

[15] O. Klymov, M. Yermakov, R. Pshenychnyi, O. Dobrozhan, S. Agouram, M.C. Martínez-Tomás, et al., Synthesis of Zn2SnO4 particles and the influence of annealing temperature on the structural and optical properties of Zn₂_22SnO₄_44 films deposited by spraying nanoinks, Appl. Surf. Sci. Adv. 18 (2023) 100521

DOI: 10.1016/j.apsadv.2023.100521

Google Scholar

[16] R.K. Hameed, S.M. AL-Jawad, N.J. Imran, Investigation of structural, morphological, and optical properties of Fe and Co/Fe dual-doping Zn2SnO4 nanoparticles synthesized by hydrothermal method for biomedical application, Plasmonics (2024) 1-15

DOI: 10.1007/s11468-024-02230-7

Google Scholar

[17] I. Ahmad, M.Y. Alshahrani, S. Wahab, A.I. Al-Harbi, N. Nisar, Y. Alraey, A. Alqahtani, M.A. Mir, S. Irfan, M. Saeed, Zinc oxide nanoparticle: An effective antibacterial agent against pathogenic bacterial isolates, J. King Saud Univ. Sci. 34(5) (2022) 102110

DOI: 10.1016/j.jksus.2022.102110

Google Scholar

[18] A. Mirzaei, R. Peymanfar, S. Javanshir, R. Fallahi, J. Karimi, Antibacterial characteristics of CuS nanoplates anchored onto g-C2N2 nanosheets, suspended in PMMA matrix, Int. J. Nanosci. Nanotechnol. 17(4) (2021) 249-260.

Google Scholar

[19] M.M. Muhsen, S.M.H. Al-Jawad, A.A. Taha, Gum Arabic-modified Mn-doped CuS nanoprisms for cancer photothermal treatment, Chem. Pap. 76(11) (2022) 6821-6838

DOI: 10.1007/s11696-022-02364-0

Google Scholar

[20] L.A. Joseph, J.E. Jeronsia, M.M. Jaculine, S.J. Das, Investigations on structural and optical properties of hydrothermally synthesized Zn₂SnO₄ nanoparticles, Phys. Res. Int. 2016(1) (2016) 1801795

DOI: 10.1155/2016/1801795

Google Scholar

[21] A.A. Taha, S.M. AL-Jawad, L.F. AL-Barram, Improvement of cancer therapy by TAT peptide conjugated gold nanoparticles, J. Clust. Sci. 30(2) (2019) 403-414.

DOI: 10.1007/s10876-019-01497-9

Google Scholar

[22] X. Lou, X. Jia, J. Xu, S. Liu, Q. Gao, Hydrothermal synthesis, characterization and photocatalytic properties of Zn₂SnO₄ nanocrystal, Mater. Sci. Eng. A 432(1-2) (2006) 221-225

DOI: 10.1016/j.msea.2006.06.010

Google Scholar

[23] J. Fang, A. Huang, P. Zhu, N. Xu, J. Xie, J. Chi, M. Wu, Hydrothermal preparation and characterization of Zn2SnO4 particles, Mater. Res. Bull. 36(7-8) (2001) 1391-1397

DOI: 10.1016/S0025-5408(01)00621-3

Google Scholar

[24] J. Zeng, M. Xin, K. Li, H. Wang, H. Yan, W. Zhang, Transformation process and photocatalytic activities of hydrothermally synthesized Zn₂SnO₄ nanocrystals, J. Phys. Chem. C 112(11) (2008) 4159-4167

DOI: 10.1021/jp7113797

Google Scholar

[25] S. Shu, C. Wang, S. Liu, Facile synthesis of perfect ZnSn(OH)₆ octahedral microcrystallines with controlled size and high sensing performance towards ethanol, Front. Mater. Sci. 12 (2018) 176-183

DOI: 10.1007/s11706-018-0423-2

Google Scholar

[26] S. Al-Mallah, A.M. Al-Naimi, Minimum inhibitory concentration of iron oxide nanoparticles with hydrogen peroxide against endodontic Enterococcus faecalis, Al-Rafidain Dent. J. 21(2) (2021) 158-164

DOI: 10.33899/rden.2021.128786.1062

Google Scholar

[27] A.A. Taha, S.M.H. Al-Jawad, A.M. Redha, Preparation and characterization of nanostructure CuS for biological activity, Mod. Phys. Lett. B 33(30) (2019) 1950374

DOI: 10.1142/S0217984919503743

Google Scholar

[28] S.M. Al-Jawad, A.A. Taha, A.M. Redha, N.J. Imran, Influence of nickel doping concentration on the characteristics of nanostructure CuS prepared by hydrothermal method for antibacterial activity, Surf. Rev. Lett. 28(1) (2021) 2050031

DOI: 10.1142/S0218625X20500316

Google Scholar