Thermodynamic Sorption Study of a Medicinal Plant Using the Standard Static Gravimetric Method for a Better Conservation

Article Preview

Abstract:

Aromatic and medicinal plants are a natural source of pharmaceutical compounds with curative and therapeutic properties. They have been used for centuries to treat various ailments and offer alternative options to conventional treatments. Among these plants, Marrubium vulgare L., which is widely used in traditional medicine for diabetes treatment, has antioxidant potential as well as anti-inflammatory, healing, and soothing properties, attracting increasing medical interest. In this context, the hygroscopic behavior of Marrubium vulgare L. is reported. The adsorption-desorption isotherms of Marrubium vulgare leaves were determined using the standard static gravimetric method at three temperatures (30, 40, and 50 °C) to ensure physicochemical and microbiological stability throughout the storage process. The results showed that the adsorption-desorption isotherms of all samples followed a sigmoidal pattern, consistent with other agricultural products discussed in the literature. The optimal moisture content for conservation was also determined. The GAB (Guggenheim-Anderson-de Boer) and double polynomial models were the most suitable for describing the sorption curves. The adsorption-desorption data were examined to determine the moisture content of the monolayer (3.4-9.7%), properties of sorbed water in porous structures and surfaces, total heat of wetting, net isosteric heat of sorption, spreading pressure, differential entropy, and enthalpy-entropy compensation. It was also observed that the spreading pressure and average pore radius increase with rising relative humidity and temperature, leading to the appearance of defects on the surface of Marrubium vulgare leaves. Compensation theory is essential to consider when evaluating the impact of temperature on the adsorption-desorption properties. The Gibbs free energy was positive for sorption, indicating that the process is non-spontaneous.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] I. Giannenas, E. Sidiropoulou, E. Bonos, E. Christaki, P. Florou-Paneri, The history of herbs, medicinal and aromatic plants, and their extracts: Past, current situation and future perspectives, in: Feed Addit. Aromat. Plants Herbs Anim. Nutr. Heal., 2019.

DOI: 10.1016/B978-0-12-814700-9.00001-7

Google Scholar

[2] T.M. Joseph, D. Kar Mahapatra, A. Esmaeili, Ł. Piszczyk, M.S. Hasanin, M. Kattali, J. Haponiuk, S. Thomas, Nanoparticles: Taking a Unique Position in Medicine, Nanomaterials 13 (2023).

DOI: 10.3390/nano13030574

Google Scholar

[3] T. Wijesekara, B. Xu, Health-Promoting Effects of Bioactive Compounds from Plant Endophytic Fungi, J. Fungi 9 (2023).

DOI: 10.3390/jof9100997

Google Scholar

[4] J.D. Enderle, J.D. Bronzino, Introduction to Biomedical Engineering, 2011.

Google Scholar

[5] N. Chanda, Bound together: How traders, preachers, adventurers, and warriors shaped globalization, 2007.

DOI: 10.5860/choice.45-3922

Google Scholar

[6] K. Hefferon, Let Thy Food Be Thy Medicine: Plants and Modern Medicine, Oxford University Press, USA, 2012.

Google Scholar

[7] K. Al-Kodmany, Greenery-Covered Tall Buildings: A Review, Buildings 13 (2023).

DOI: 10.3390/buildings13092362

Google Scholar

[8] W. Strehlow, D. Frawley, K. Strehlow, Hildegard of Bingen's medicine, Inner Traditions, Inner Traditions/Bear & Co, Bear & Co, 1988.

Google Scholar

[9] J. Fakchich, M. Elachouri, An overview on ethnobotanico-pharmacological studies carried out in Morocco, from 1991 to 2015: Systematic review (part 1), J. Ethnopharmacol. 267 (2021).

DOI: 10.1016/j.jep.2020.113200

Google Scholar

[10] P.S. Karunanithi, Elucidating Terpene Metabolism Towards Production of Plant-Based Therapeutics and Improving Stress-Resistance in Food Crops, PhD Thesis, University of California, 2020.

Google Scholar

[11] Y. Bahammou, Z. Tagnamas, A. Lamharrar, A. Idlimam, Thin-layer solar drying characteristics of Moroccan horehound leaves (Marrubium vulgare L.) under natural and forced convection solar drying, Sol. Energy 188 (2019) 958–969. https://doi.org/.

DOI: 10.1016/j.solener.2019.07.003

Google Scholar

[12] S. Hu, Y. Zhang, G. Shen, H. Zhang, Z. Yuan, W. Zhang, Adsorption/desorption behavior and mechanisms of sulfadiazine and sulfamethoxazole in agricultural soil systems, Soil Tillage Res. 186 (2019).

DOI: 10.1016/j.still.2018.10.026

Google Scholar

[13] D.D. Do, S. Junpirom, H.D. Do, A new adsorption-desorption model for water adsorption in activated carbon, Carbon N. Y. 47 (2009).

DOI: 10.1016/j.carbon.2009.01.039

Google Scholar

[14] E.H. Bougayr, E.K. Lakhal, A. Idlimam, A. Fantasse, A. Lamharrar, M. Kouhila, N. Abdenouri, F. Berroug, Experimental Study and Modeling of Drying Kinetics and Evaluation of Thermal Diffusivity of Sewage Sludge, Key Eng. Mater. 954 (2023).

DOI: 10.4028/p-d2lnmZ

Google Scholar

[15] O.U. Dairo, T.M.A. Olayanju, Convective Thin-Layer Drying Characteristics of Sesame Seed, Int. J. Eng. Res. Africa 7 (2012).

DOI: 10.4028/www.scientific.net/jera.7.55

Google Scholar

[16] A.O. Omolola, A.I.O. Jideani, P.F. Kapila, Quality properties of fruits as affected by drying operation, Crit. Rev. Food Sci. Nutr. 57 (2017). https://doi.org/10.1080/10408398. 2013.859563.

DOI: 10.1080/10408398.2013.859563

Google Scholar

[17] I. Ali, L. Abdelkader, B. El Houssayne, K. Mohamed, L. El Khadir, Solar convective drying in thin layers and modeling of municipal waste at three temperatures, Appl. Therm. Eng. 108 (2016) 41–47.

DOI: 10.1016/j.applthermaleng.2016.07.098

Google Scholar

[18] C.A. Bennett, R.S. Kistler, K. Nangia, W. Al-Ghawas, N. Al-Hajji, A. Al-Jemaz, Observation of an isokinetic temperature and compensation effect for high-temperature crude oil fouling, Heat Transf. Eng. 30 (2009).

DOI: 10.1080/01457630902751478

Google Scholar

[19] F. Azeddine, P.A. Sergio, L. Angélique, L. El Khadir, I. Ali, B. El Houssayne, Rheological Behavior and Characterization of Drinking Water Treatment Sludge from Morocco, Clean Technol. 5 (2023).

DOI: 10.3390/cleantechnol5010015

Google Scholar

[20] A.A. Adeyi, F.D. Fasina, A. Giwa, Kinetics and isotherm studies of liquid phase adsorption of cationic dye onto chitosan synthesized from crab shells, Int. J. Eng. Res. Africa 37 (2018).

DOI: 10.4028/www.scientific.net/JERA.37.112

Google Scholar

[21] S.V. Manyele, Analysis of the factors affecting the value-added to dried pineapple fruits using a simple interactive computer model, Int. J. Eng. Res. Africa 4 (2011).

DOI: 10.4028/www.scientific.net/JERA.4.1

Google Scholar

[22] J. Swanson, D. Kittelson, A method to measure static charge on a filter used for gravimetric analysis, Aerosol Sci. Technol. 42 (2008).

DOI: 10.1080/02786820802232980

Google Scholar

[23] M. Karoglou, A. Moropoulou, Z.B. Maroulis, M.K. Krokida, Water sorption isotherms of some building materials, Dry. Technol. 23 (2005).

DOI: 10.1081/DRT-200047948

Google Scholar

[24] E.H. Bougayr, E.K. Lakhal, A. Idlimam, A. Lamharrar, M. Kouhila, F. Berroug, Experimental study of hygroscopic equilibrium and thermodynamic properties of sewage sludge, Appl. Therm. Eng. 143 (2018).

DOI: 10.1016/j.applthermaleng.2018.07.048

Google Scholar

[25] L. Lahnine, A. Idlimam, M. Mahrouz, A. Jada, H. Hanine, M. Mouhib, S. Zantar, M. Kouhila, Adsorption measurements and modeling of thyme treated with gamma irradiation and thermal-biochemical treatment, Ind. Crops Prod. 88 (2016).

DOI: 10.1016/j.indcrop.2016.02.049

Google Scholar

[26] M. Edrisi Sormoli, T.A.G. Langrish, Moisture sorption isotherms and net isosteric heat of sorption for spray-dried pure orange juice powder, LWT 62 (2015). https://doi.org/10.1016/ j.lwt.2014.09.064.

DOI: 10.1016/j.lwt.2014.09.064

Google Scholar

[27] Sangeeta, B.S. Hathan, Sorption behavior, thermodynamic properties and storage stability of ready-to-eat Elephant Foot Yam (Amorphophallus spp.) product: physic-chemical properties, minerals, total dietary fiber and phenolic content of stored product, J. Food Meas. Charact. 11 (2017).

DOI: 10.1007/s11694-016-9408-y

Google Scholar

[28] A.C. Dalgıç, H. Pekmez, K.B. Belibağlı, Effect of drying methods on the moisture sorption isotherms and thermodynamic properties of mint leaves, J. Food Sci. Technol. 49 (2012).

DOI: 10.1007/s13197-011-0302-7

Google Scholar

[29] K. Jayaraj Rao, P. Heartwin Amala Dhas, F. Magdaline Eljeeva Emerald, B.C. Ghosh, B. V. Balasubramanyam, S. Kulkarni, Moisture sorption characteristics of chhana podo at 5 °C and 35 °C, J. Food Eng. 76 (2006).

DOI: 10.1016/j.jfoodeng.2005.04.048

Google Scholar

[30] O. Bensebia, K. Allia, Analysis of adsorption–desorption moisture isotherms of rosemary leaves, J. Appl. Res. Med. Aromat. Plants 3 (2016). https://doi.org/10.1016/j.jarmap. 2016.01.005.

DOI: 10.1016/j.jarmap.2016.01.005

Google Scholar

[31] S. Ouertani, S. Azzouz, L. Hassini, A. Koubaa, A. Belghith, Moisture sorption isotherms and thermodynamic properties of Jack pine and palm wood: Comparative study, Ind. Crops Prod. 56 (2014).

DOI: 10.1016/j.indcrop.2014.03.004

Google Scholar

[32] G.S. Rosa, M.A. Moraes, L.A.A. Pinto, Moisture sorption properties of chitosan, LWT - Food Sci. Technol. 43 (2010) 415–420.

DOI: 10.1016/J.LWT.2009.09.003

Google Scholar

[33] Y. Bahammou, H. Moussaoui, H. Lamsayeh, Z. Tagnamas, M. Kouhila, R. Ouaabou, A. Lamharrar, A. Idlimam, Water sorption isotherms and drying characteristics of rupturewort (Herniaria hirsuta) during a convective solar drying for a better conservation, Sol. Energy 201 (2020).

DOI: 10.1016/j.solener.2020.03.071

Google Scholar

[34] D. Argyropoulos, R. Alex, R. Kohler, J. Müller, Moisture sorption isotherms and isosteric heat of sorption of leaves and stems of lemon balm (Melissa officinalis L.) established by dynamic vapor sorption, LWT 47 (2012).

DOI: 10.1016/j.lwt.2012.01.026

Google Scholar

[35] M. Ben Abdelhamid, D. Mihoubi, J. Sghaier, A. Bellagi, Water Sorption Isotherms and Thermodynamic Characteristics of Hardened Cement Paste and Mortar, Transp. Porous Media 113 (2016).

DOI: 10.1007/s11242-016-0694-y

Google Scholar

[36] L. Červenka, L. Hloušková, S. Žabčíková, Moisture adsorption isotherms and thermodynamic properties of green and roasted Yerba mate (Ilex paraguariensis), Food Biosci. 12 (2015).

DOI: 10.1016/j.fbio.2015.10.001

Google Scholar

[37] H. Machhour, A. Idlimam, M. Mahrouz, I. El Hadrami, M. Kouhila, Sorption isotherms and thermodynamic properties of peppermint tea (Mentha piperita) after thermal and biochemical treatment, J. Mater. Environ. Sci. 3 (2012).

Google Scholar

[38] K. Muzaffar, P. Kumar, Moisture sorption isotherms and storage study of spray dried tamarind pulp powder, Powder Technol. 291 (2016). https://doi.org/10.1016/ j.powtec.2015.12.046.

DOI: 10.1016/j.powtec.2015.12.046

Google Scholar

[39] R.J. Aguerre, C. Suárez, P.E. Viollaz, Enthalpy‐Entropy Compensation in Sorption Phenomena: Application to the Prediction of the Effect of Temperature on Food Isotherms, J. Food Sci. 51 (1986) 1547–1549.

DOI: 10.1111/j.1365-2621.1986.tb13856.x

Google Scholar