[1]
S. Lorenzini, P. Andreone. Stem cell therapy for human liver cirrhosis: a cautious analysis of the results. Stem Cells; 25 (9), 2383-4, (2007).
DOI: 10.1634/stemcells.2007-0056
Google Scholar
[2]
L. G Griffith, G. Naughton. Tissue engineering: current challenges and expanding opportunities. Science, 295, 1009–14, (2002).
DOI: 10.1126/science.1069210
Google Scholar
[3]
G. F Muschler, C. Nakamoto, L. G Griffith. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 86-A (7), 1541–1558, (2004).
DOI: 10.2106/00004623-200407000-00029
Google Scholar
[4]
U. A Stock, J. P Vacanti. Tissue engineering: current state and prospects. Ann Rev Med. 52, 443–451, (2001).
DOI: 10.1146/annurev.med.52.1.443
Google Scholar
[5]
E. Rabkin, F. J Schoen. Cardiovascular tissue engineering. Cardiovasc Pathol., 11 (6), 305–17, (2002).
Google Scholar
[6]
L. Budyanto, Y. Q Goh; C. P Ooi. Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid-liquid phase separation and freeze extraction. J. Mater. Sci. Mater. Med., 20 (1), 105–11, (2009).
DOI: 10.1007/s10856-008-3545-8
Google Scholar
[7]
C. A Bashur, R. D Shaffer, L. A Dahlgren, S. A Guelcher, A. S Goldstein. Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng. Part A, 15 (9), 2435–45, (2009).
DOI: 10.1089/ten.tea.2008.0295
Google Scholar
[8]
L. G Cima, J. P Vacanti, C. Vacanti, D. Ingber, D. Mooney, R. Langer. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng, 113 (2), 143-51, (1991).
DOI: 10.1115/1.2891228
Google Scholar
[9]
J. Guan, K. L Fujimoto, M. S Sacks, W. R Wagner. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials, 26 (18), 3961–71, (2005).
DOI: 10.1016/j.biomaterials.2004.10.018
Google Scholar
[10]
L. D Harris, B. S Kim, D. J Mooney. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res, 42(3), 396–402, (1998).
DOI: 10.1002/(sici)1097-4636(19981205)42:3<396::aid-jbm7>3.0.co;2-e
Google Scholar
[11]
R. G Heijkants, R. V van Calck, T. G van Tienen, J. H de Groot, A. J Pennings, P. Buma, R. P Veth, A. J Schouten. Polyurethane scaffold formation via a combination of salt leaching and thermally induced phase separation. J Biomed Mater Res A, 87 (4), 921-32, (2008).
DOI: 10.1002/jbm.a.31829
Google Scholar
[12]
Q. Hou, D. W Grijpma, J. Feijen. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process. J Biomed Mater Res B Appl Biomater, , 67 (2), 732-40, (2003).
DOI: 10.1002/jbm.b.10066
Google Scholar
[13]
Y. Y Hsu, J. D Gresser, D. J Trantolo, C. M Lyons, P. R Gangadharam, D. L Wise. Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices. J Biomed Mater Res, 35 (1), 107-16. (1997).
DOI: 10.1002/(sici)1097-4636(199704)35:1<107::aid-jbm11>3.0.co;2-g
Google Scholar
[14]
E. Karamuk, J. Mayer, E. Wintermantel, T. Akaike. Partially degradable film fabric composites: textile scaffold for liver cell culture. Artif Organs, 23 (9), 881-7, (1999).
DOI: 10.1046/j.1525-1594.1999.06308.x
Google Scholar
[15]
S. V Madihally, H. W Matthew. Porous chitosan scaffolds for tissue engineering. Biomaterials, 20 (12), 1133-2, (1999).
DOI: 10.1016/s0142-9612(99)00011-3
Google Scholar
[16]
D. J Mooney, D. F Baldwin, N. P Suh, J. P Vacanti, R. Langer. Novel approach to fabricate porous sponges of poly(D, L-lactic co-glycolic acid) without the use of organic solvents. Biomaterials 17 (14), 1417-22, (1996).
DOI: 10.1016/0142-9612(96)87284-x
Google Scholar
[17]
W. L Murphy, R. G Dennis, J. L Kileny, D. J Mooney. Salt fusion: An approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng, 8 (1), 43–52, (2002).
DOI: 10.1089/107632702753503045
Google Scholar
[18]
Y. S Nam, J. J Yoon, T. G Park. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res, 53 (1), 1–7, (2000).
DOI: 10.1002/(sici)1097-4636(2000)53:1<1::aid-jbm1>3.0.co;2-r
Google Scholar
[19]
M. Reuber, L. S Yu, W. J Kolff. Effect of processing temperature on the properties of polyurethane and comparison of vacuum forming and solution casting to make artificial hearts. Artif Organs 11, 323-323, (1987).
Google Scholar
[20]
H. Schoof, J. Apel, I. Heschel, G Rau. Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res, 58 (4), 352-7, (2001).
DOI: 10.1002/jbm.1028
Google Scholar
[21]
H. Schoof, L. Burns, A. Fisher, I. Heschel, G. Rau. Dendritic ice morphology in uni-directionally solidified collagen suspensions. J Cryst Growth, 209 (1), 122-129, (2000).
DOI: 10.1016/s0022-0248(99)00519-9
Google Scholar
[22]
V. P Shastri, I. Martin, R. Langer. Macroporous polymer foams by hydrocarbon templating. Proc Natl Acad Sci USA, 97 (5), 1970-5, (2000).
DOI: 10.1073/pnas.97.5.1970
Google Scholar
[23]
K. Shin, A. C Jayasuriya, D. H Kohn. Effect of ionic activity products on the structure and composition of mineral self assembled on three-dimensional poly(lactide-co-glycolide) scaffolds. J. Biomed Mater Res A, 83 (4), 1076-86, (2007).
DOI: 10.1002/jbm.a.31437
Google Scholar
[24]
R. C Thompson, M. J Yaszemski, J. M Powers, A. G Mikos. Fabrication of biodegradable polymer scaffolds to engineering trabecular bone. Biomater Sci Polym Ed, 7 (1), 23-38, (1995).
Google Scholar
[25]
P. van de Witte, P. J Dijkstra, J.W. A van den Berg, J. Feijen. Phase behavior of polylactides in solvent-nonsolvent mixtures. J Polym Sci Pol. Phys, 34 (15), 2553-68, (1996).
DOI: 10.1002/(sici)1099-0488(19961115)34:15<2553::aid-polb3>3.0.co;2-u
Google Scholar
[26]
J. M Williams, A. Adewunmi, R. M Schek, C. L Flanagan, P. H Krebsbach, S. E Feinberg, S. J Hollister, S. Das. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 26 (23), 4817–27, (2005).
DOI: 10.1016/j.biomaterials.2004.11.057
Google Scholar
[27]
B. Starly, W. Sun. Biomimetic Design and Fabrication of Tissue Engineered Scaffolds. VDM Verlag, ISBN: 978-8364-2464-6, (2007).
Google Scholar
[28]
I. Zein, D. W Hutmacher, K. C Tan, S. H Teoh, Fused deposition modelling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23 (4), 1169–85, (2002).
DOI: 10.1016/s0142-9612(01)00232-0
Google Scholar
[29]
K. U Koch, B. Biesinger, C. Arnholz, V. Jansson. Creating of bio-compatible, high stress resistant and resorbable implants using multiphase jet solidifcation technology, Rapid News Publication, 209-14, (1998).
Google Scholar
[30]
B. M Wu, S. W Borland, R. A Giordano, L. G Cima, E. M Sachs, M. J Cima. Solid free-form fabrication of drug delivery devices. J Controlled Release, 40 (1-2), 77-87, (1996).
DOI: 10.1016/0168-3659(95)00173-5
Google Scholar
[31]
I. Zein, D. W Hutmacher, K. C Tan, S. H Teoh, Fused deposition modelling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23 (4), 1169-85, (2002).
DOI: 10.1016/s0142-9612(01)00232-0
Google Scholar
[32]
T. B Woodfield, J. Malda, J. de Wijn, F. Peters, J. Riesle, C. A van Blitterswijk. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25 (18), 4149-61, (2004).
DOI: 10.1016/j.biomaterials.2003.10.056
Google Scholar
[33]
S. S Kim, H. Utsunomiya, J. A Koski, B. M Wu, M. J Cima, J. Sohn, K. Mukai, L. G Griffith, J. P Vacanti. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymeric scaffold with an intrinsic network of channels. Ann. Surg, 228 (1) 8–13, (1998).
DOI: 10.1097/00000658-199807000-00002
Google Scholar
[34]
J. Zeltinger, J. K Sherwood, D. A Graham, R. Mueller, L. G Griffith. Effect of pore size and void fraction on cellular adhesion, proliferation and matrix deposition. Tissue Eng., 7 (5) 557–72, (2001).
DOI: 10.1089/107632701753213183
Google Scholar
[35]
J. M Taboas, R. D Maddox, P. H Krebsbach, S. J Hollister. Indirect Solid Free Form fabrication of local and global porous, biomimetic and composite 3D polymer ceramic scaffolds. Biomaterials, 24 (1), 181-94, (2003).
DOI: 10.1016/s0142-9612(02)00276-4
Google Scholar
[36]
P. X Ma. Scaffolds for tissue fabrication. Materials Today, 7 (5), 30-40, (2004).
Google Scholar
[37]
W. Y Yeong, C. K Chua, K. F Leong, M. Chandrasekaran. Rapid prototyping in tissue engineering: challenges and potential. Trends in Biotechnology; 22 (12), 643-52, (2004).
DOI: 10.1016/j.tibtech.2004.10.004
Google Scholar
[38]
Y. Mi, Y. Chan, D. Trau, P. Huang, E. Chen. Micromolding of PDMS scaffolds and microwells for tissue culture and cell patterning: A new method of microfabrication by the self-assembled micropatterns of diblock copolymer micelle. Polymer, 47 (14), 5124-30, (2006).
DOI: 10.1016/j.polymer.2006.04.063
Google Scholar
[39]
H. Yu, B. Li, X. Zhang. Flexible fabrication of three-dimensional multi layered micro structures using a scanning laser system. Sensors and Actuators A, 125 (2) 553-564, (2006).
DOI: 10.1016/j.sna.2005.07.001
Google Scholar
[40]
E. Sachlos, J. T Czernuszka. Making tissue engineering scaffolds work, Review: The application of solid free form fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater, 5, 29-40, (2003).
DOI: 10.22203/ecm.v005a03
Google Scholar
[41]
H. Lo, M. S Ponticiello, K. W Leong. Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng, Spring 1(1), 15-28, (1995).
DOI: 10.1089/ten.1995.1.15
Google Scholar