A Method to Fabricate Liver Tissue Engineering Scaffold

Article Preview

Abstract:

In this paper, the authors describe a rapid prototyping method to produce vascularized tissue such as liver scaffold for tissue engineering applications. A scaffold with an interconnected channel was designed using a CAD environment. The data were transferred to a Polyjet 3D Printing machine (Eden 250, Object, Israel) to generate the models. Based on the 3D Printing model, a PDMS (polydimethyl-silicone) mould was created which can be used to cast the biodegradable material. The advantages and limitations of Rapid Prototyping (RP) techniques as well as the future direction of RP development in tissue engineering scaffold fabrication were reviewed.

You might also be interested in these eBooks

Info:

Pages:

73-80

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Lorenzini, P. Andreone. Stem cell therapy for human liver cirrhosis: a cautious analysis of the results. Stem Cells; 25 (9), 2383-4, (2007).

DOI: 10.1634/stemcells.2007-0056

Google Scholar

[2] L. G Griffith, G. Naughton. Tissue engineering: current challenges and expanding opportunities. Science, 295, 1009–14, (2002).

DOI: 10.1126/science.1069210

Google Scholar

[3] G. F Muschler, C. Nakamoto, L. G Griffith. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 86-A (7), 1541–1558, (2004).

DOI: 10.2106/00004623-200407000-00029

Google Scholar

[4] U. A Stock, J. P Vacanti. Tissue engineering: current state and prospects. Ann Rev Med. 52, 443–451, (2001).

DOI: 10.1146/annurev.med.52.1.443

Google Scholar

[5] E. Rabkin, F. J Schoen. Cardiovascular tissue engineering. Cardiovasc Pathol., 11 (6), 305–17, (2002).

Google Scholar

[6] L. Budyanto, Y. Q Goh; C. P Ooi. Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid-liquid phase separation and freeze extraction. J. Mater. Sci. Mater. Med., 20 (1), 105–11, (2009).

DOI: 10.1007/s10856-008-3545-8

Google Scholar

[7] C. A Bashur, R. D Shaffer, L. A Dahlgren, S. A Guelcher, A. S Goldstein. Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng. Part A, 15 (9), 2435–45, (2009).

DOI: 10.1089/ten.tea.2008.0295

Google Scholar

[8] L. G Cima, J. P Vacanti, C. Vacanti, D. Ingber, D. Mooney, R. Langer. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng, 113 (2), 143-51, (1991).

DOI: 10.1115/1.2891228

Google Scholar

[9] J. Guan, K. L Fujimoto, M. S Sacks, W. R Wagner. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials, 26 (18), 3961–71, (2005).

DOI: 10.1016/j.biomaterials.2004.10.018

Google Scholar

[10] L. D Harris, B. S Kim, D. J Mooney. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res, 42(3), 396–402, (1998).

DOI: 10.1002/(sici)1097-4636(19981205)42:3<396::aid-jbm7>3.0.co;2-e

Google Scholar

[11] R. G Heijkants, R. V van Calck, T. G van Tienen, J. H de Groot, A. J Pennings, P. Buma, R. P Veth, A. J Schouten. Polyurethane scaffold formation via a combination of salt leaching and thermally induced phase separation. J Biomed Mater Res A, 87 (4), 921-32, (2008).

DOI: 10.1002/jbm.a.31829

Google Scholar

[12] Q. Hou, D. W Grijpma, J. Feijen. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process. J Biomed Mater Res B Appl Biomater, , 67 (2), 732-40, (2003).

DOI: 10.1002/jbm.b.10066

Google Scholar

[13] Y. Y Hsu, J. D Gresser, D. J Trantolo, C. M Lyons, P. R Gangadharam, D. L Wise. Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices. J Biomed Mater Res, 35 (1), 107-16. (1997).

DOI: 10.1002/(sici)1097-4636(199704)35:1<107::aid-jbm11>3.0.co;2-g

Google Scholar

[14] E. Karamuk, J. Mayer, E. Wintermantel, T. Akaike. Partially degradable film fabric composites: textile scaffold for liver cell culture. Artif Organs, 23 (9), 881-7, (1999).

DOI: 10.1046/j.1525-1594.1999.06308.x

Google Scholar

[15] S. V Madihally, H. W Matthew. Porous chitosan scaffolds for tissue engineering. Biomaterials, 20 (12), 1133-2, (1999).

DOI: 10.1016/s0142-9612(99)00011-3

Google Scholar

[16] D. J Mooney, D. F Baldwin, N. P Suh, J. P Vacanti, R. Langer. Novel approach to fabricate porous sponges of poly(D, L-lactic co-glycolic acid) without the use of organic solvents. Biomaterials 17 (14), 1417-22, (1996).

DOI: 10.1016/0142-9612(96)87284-x

Google Scholar

[17] W. L Murphy, R. G Dennis, J. L Kileny, D. J Mooney. Salt fusion: An approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng, 8 (1), 43–52, (2002).

DOI: 10.1089/107632702753503045

Google Scholar

[18] Y. S Nam, J. J Yoon, T. G Park. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res, 53 (1), 1–7, (2000).

DOI: 10.1002/(sici)1097-4636(2000)53:1<1::aid-jbm1>3.0.co;2-r

Google Scholar

[19] M. Reuber, L. S Yu, W. J Kolff. Effect of processing temperature on the properties of polyurethane and comparison of vacuum forming and solution casting to make artificial hearts. Artif Organs 11, 323-323, (1987).

Google Scholar

[20] H. Schoof, J. Apel, I. Heschel, G Rau. Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res, 58 (4), 352-7, (2001).

DOI: 10.1002/jbm.1028

Google Scholar

[21] H. Schoof, L. Burns, A. Fisher, I. Heschel, G. Rau. Dendritic ice morphology in uni-directionally solidified collagen suspensions. J Cryst Growth, 209 (1), 122-129, (2000).

DOI: 10.1016/s0022-0248(99)00519-9

Google Scholar

[22] V. P Shastri, I. Martin, R. Langer. Macroporous polymer foams by hydrocarbon templating. Proc Natl Acad Sci USA, 97 (5), 1970-5, (2000).

DOI: 10.1073/pnas.97.5.1970

Google Scholar

[23] K. Shin, A. C Jayasuriya, D. H Kohn. Effect of ionic activity products on the structure and composition of mineral self assembled on three-dimensional poly(lactide-co-glycolide) scaffolds. J. Biomed Mater Res A, 83 (4), 1076-86, (2007).

DOI: 10.1002/jbm.a.31437

Google Scholar

[24] R. C Thompson, M. J Yaszemski, J. M Powers, A. G Mikos. Fabrication of biodegradable polymer scaffolds to engineering trabecular bone. Biomater Sci Polym Ed, 7 (1), 23-38, (1995).

Google Scholar

[25] P. van de Witte, P. J Dijkstra, J.W. A van den Berg, J. Feijen. Phase behavior of polylactides in solvent-nonsolvent mixtures. J Polym Sci Pol. Phys, 34 (15), 2553-68, (1996).

DOI: 10.1002/(sici)1099-0488(19961115)34:15<2553::aid-polb3>3.0.co;2-u

Google Scholar

[26] J. M Williams, A. Adewunmi, R. M Schek, C. L Flanagan, P. H Krebsbach, S. E Feinberg, S. J Hollister, S. Das. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 26 (23), 4817–27, (2005).

DOI: 10.1016/j.biomaterials.2004.11.057

Google Scholar

[27] B. Starly, W. Sun. Biomimetic Design and Fabrication of Tissue Engineered Scaffolds. VDM Verlag, ISBN: 978-8364-2464-6, (2007).

Google Scholar

[28] I. Zein, D. W Hutmacher, K. C Tan, S. H Teoh, Fused deposition modelling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23 (4), 1169–85, (2002).

DOI: 10.1016/s0142-9612(01)00232-0

Google Scholar

[29] K. U Koch, B. Biesinger, C. Arnholz, V. Jansson. Creating of bio-compatible, high stress resistant and resorbable implants using multiphase jet solidifcation technology, Rapid News Publication, 209-14, (1998).

Google Scholar

[30] B. M Wu, S. W Borland, R. A Giordano, L. G Cima, E. M Sachs, M. J Cima. Solid free-form fabrication of drug delivery devices. J Controlled Release, 40 (1-2), 77-87, (1996).

DOI: 10.1016/0168-3659(95)00173-5

Google Scholar

[31] I. Zein, D. W Hutmacher, K. C Tan, S. H Teoh, Fused deposition modelling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23 (4), 1169-85, (2002).

DOI: 10.1016/s0142-9612(01)00232-0

Google Scholar

[32] T. B Woodfield, J. Malda, J. de Wijn, F. Peters, J. Riesle, C. A van Blitterswijk. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25 (18), 4149-61, (2004).

DOI: 10.1016/j.biomaterials.2003.10.056

Google Scholar

[33] S. S Kim, H. Utsunomiya, J. A Koski, B. M Wu, M. J Cima, J. Sohn, K. Mukai, L. G Griffith, J. P Vacanti. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymeric scaffold with an intrinsic network of channels. Ann. Surg, 228 (1) 8–13, (1998).

DOI: 10.1097/00000658-199807000-00002

Google Scholar

[34] J. Zeltinger, J. K Sherwood, D. A Graham, R. Mueller, L. G Griffith. Effect of pore size and void fraction on cellular adhesion, proliferation and matrix deposition. Tissue Eng., 7 (5) 557–72, (2001).

DOI: 10.1089/107632701753213183

Google Scholar

[35] J. M Taboas, R. D Maddox, P. H Krebsbach, S. J Hollister. Indirect Solid Free Form fabrication of local and global porous, biomimetic and composite 3D polymer ceramic scaffolds. Biomaterials, 24 (1), 181-94, (2003).

DOI: 10.1016/s0142-9612(02)00276-4

Google Scholar

[36] P. X Ma. Scaffolds for tissue fabrication. Materials Today, 7 (5), 30-40, (2004).

Google Scholar

[37] W. Y Yeong, C. K Chua, K. F Leong, M. Chandrasekaran. Rapid prototyping in tissue engineering: challenges and potential. Trends in Biotechnology; 22 (12), 643-52, (2004).

DOI: 10.1016/j.tibtech.2004.10.004

Google Scholar

[38] Y. Mi, Y. Chan, D. Trau, P. Huang, E. Chen. Micromolding of PDMS scaffolds and microwells for tissue culture and cell patterning: A new method of microfabrication by the self-assembled micropatterns of diblock copolymer micelle. Polymer, 47 (14), 5124-30, (2006).

DOI: 10.1016/j.polymer.2006.04.063

Google Scholar

[39] H. Yu, B. Li, X. Zhang. Flexible fabrication of three-dimensional multi layered micro structures using a scanning laser system. Sensors and Actuators A, 125 (2) 553-564, (2006).

DOI: 10.1016/j.sna.2005.07.001

Google Scholar

[40] E. Sachlos, J. T Czernuszka. Making tissue engineering scaffolds work, Review: The application of solid free form fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater, 5, 29-40, (2003).

DOI: 10.22203/ecm.v005a03

Google Scholar

[41] H. Lo, M. S Ponticiello, K. W Leong. Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng, Spring 1(1), 15-28, (1995).

DOI: 10.1089/ten.1995.1.15

Google Scholar