Biovitroceramic Coatings on Modified Surface of 316L Austenitic Stainless Steel

Article Preview

Abstract:

Austenitic stainless steel 316L is widely used in implantology due to its biocompatibility, a lower price than titanium and because can be easily mechanically machined. The drawback is due to the fact that toxic nickel and chromium ions are released into human body fluids. Our proposal is to coat 316L austenitic stainless steel with biovitroceramic layers made of oxide system SiO2, B2O3, Na2O, CaO, TiO2, P2O5, K2O, Li2O and MgO by means of an enamelling procedure in order to hinder the release of Ni and Cr ions from the metallic implant surface toward the tissue around the implant. In order to achieve a firm adherence of biovitroceramic layer onto the metal, with an optimal composition for biocompatibility and bioactivity, we have modified the steel surface by a titanizing thermochemical treatment. The adherence of the biovitroceramic layer to the 316L stainless steel with modified surface is very good. The biovitroceramic coating - metallic substrate couple was studied by optical microscopy, electron microscopy (SEM and EDAX), X-ray diffraction analysis and microhardness trials.

You might also be interested in these eBooks

Info:

Pages:

19-30

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Kamachi Mudali, T. M. Sridhar and Baldev Raj, Corrosion of bio implants, Sadhana, 28 (3-4), 2003, 601-637.

DOI: 10.1007/bf02706450

Google Scholar

[2] T. Hanawa, Metal ion release from metal implants, Mater. Sci. Eng. C, 24 (6-8), 2004, 745-752.

Google Scholar

[3] G. Herting, I. Odnevall Wallinder and C. Leygraf, Metal release rate from AISI 316 stainless steel and pure Fe, Cr and Ni into a synthetic biological medium- a comparison, J. Environ. Monit., 10 (2008) 1092-1098.

DOI: 10.1039/b805075a

Google Scholar

[4] A. Balamurugan, S. Rajeswan, G. Balossier, A. H. S. Rebelo, J. M. F. Ferreira, Corrosion aspects of metallic implants - An overview, Mater. Corros., 59, 11 (2008) 855-869.

DOI: 10.1002/maco.200804173

Google Scholar

[5] Product Data Bulletin 316/316L Stainless Steel-B-11-01-99, (1999) 1-5.

Google Scholar

[6] Y.S. Kim, Y.R. Yoo, C.G. Sohn, K.T. Oh, K.N. Kim, J.H. Yoon and H.S. Kim, Role of alloying elements on the cytotoxic behaviour and corrosion of austenitic stainless steels, Mater. Sci. Forum, 475-479 (2005) 2295-2298.

DOI: 10.4028/www.scientific.net/msf.475-479.2295

Google Scholar

[7] International Agency for Research on Cancer 1990 IARC monographs on the evaluation of carcinogenic risks to humans. Chromium, Nickel and Welding, Vol. 49 (IARC, Lyon, France), 1990, p.104, 310.

DOI: 10.1016/0278-6915(91)90150-6

Google Scholar

[8] K. Yang and Y. Ren, Nickel-free austenitic stainless steels for medical applications, Sci. Technol. Adv. Mater., 11, (2010) 1-13.

Google Scholar

[9] K.M. Veerabadran, U. Kamachi Mudali, K.G.M. Nair and M. Subbaiyan, Improvements in localized corrosion resistance of nitrogen ion implanted type 316L stainless steel orthopaedic implant devices, Mater. Sci. Forum, 318-320, (1999) 561-568.

DOI: 10.4028/www.scientific.net/msf.318-320.561

Google Scholar

[10] J. Gawroński, Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel, Archives of Foundry Engineering, 9, 3 (2009) 235-242.

Google Scholar

[11] N. Eliaz,T. M. Sridhar, U. Kamachi Mudali and Baldev Raj, Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic applications, Surf. Eng., 21, 3 (2005) 1-5.

DOI: 10.1179/174329405x50091

Google Scholar

[12] S.R. Paital and N.B. Dahotre, Calcium phosphate coatings for bio-implant applications: materials, performance factors and methodologies, Mater. Sci. Eng. R 66, (2009), 1-70.

DOI: 10.1016/j.mser.2009.05.001

Google Scholar

[13] M.I. Espitia-Cabrera, H.D. Orozco-Hernández, M.A. Espinosa-Medina, L. Martinez and M.E. Contreras-Garcia, Comparative study of corrosion in physiological serum of ceramic coatings applied on 316L stainless steel substrate, Adv. Mat. Res., 68 (2009).

DOI: 10.4028/www.scientific.net/amr.68.152

Google Scholar

[14] G. Vargas, P. Mondragón, G. Garcia, H.H. Rodriguez, A. Chávez and D.A. Cortés, EPD-Sintering of hydroxyapatite, porcelain and wollastonite on 316L stainless steel, Key Eng. Mater., 314, (2006) 263-268.

DOI: 10.4028/www.scientific.net/kem.314.263

Google Scholar

[15] K. Hrabovská, J. Podjuklová, K. Barčova, L. Dobrovoská and K. Pelikánová, Vitreous enamel coating on steel substrates, Solid State Phenomena, 147-149 (2009) 856-860.

DOI: 10.4028/www.scientific.net/ssp.147-149.856

Google Scholar

[16] N. Ramesh Babu, Sushant Manwatkar, K. Prasada Rao and T. S. Sampath Kumar, Bioactive coatings on 316L stainless steel implants, Trends Biomater. Artif. Organs., 17, 2 (2004) 43-47.

Google Scholar

[17] M. Britchi, M. Olteanu, G. Jitianu, M. Branzei, D. Gheorghe and P. Nita, Vitroceramic coatings on metallic suports with biomedical applications, Int. J. Mater. Prod. Technol., 15, 6 (2000) 446-457.

DOI: 10.1504/ijmpt.2000.001257

Google Scholar

[18] M. Britchi, M. Olteanu, G. Jitianu, M. Branzei, D. Gheorghe and P. Nita, Preparation and characterization of biocompatible vitroceramic-metal systems for applications in medicine, Surf. Eng., 17, 4 (2001) 313-316.

DOI: 10.1179/026708401101517935

Google Scholar

[19] M. Britchi, M. Olteanu and N. Ene, Optical microscopy and microhardness characterization of some biovitroceramics used as coatings on titanium, Int. J. Mater. Prod. Technol., 25, 4 (2006) 267-280.

DOI: 10.1504/ijmpt.2006.008883

Google Scholar

[20] A. Appen, Chimya Stekla, Leningrad, 1974, pp.193-195.

Google Scholar

[21] M. Britchi, M. Olteanu and N. Ene, Obtaining and characterization of biovitroceramic coatings on the metallic substrate made from 316L austenitic steel with application in implantology, Int. J. Arts Sci., 4, 19 (2011) 215-225.

DOI: 10.4028/www.scientific.net/jbbte.13.19

Google Scholar

[22] M. Britchi, N. Ene, M. Olteanu and C. Radovici, Titanium diffusion coatings on austenitic steel obtained by the pack cementation method, J. Serb. Chem. Soc, 74, 2 (2009) 203-212.

DOI: 10.2298/jsc0902203b

Google Scholar

[23] M. Britchi, N. Ene, M. Olteanu, E. Vasile, P. Nita and E. Alexandrescu, Surface properties of 316L austenitic steel improved by simultaneous diffusion of titanium and aluminium, Defect Diffus. Forum, 297-301, (2010) 1-7.

DOI: 10.4028/www.scientific.net/ddf.297-301.1

Google Scholar

[24] M. Britchi, Mircea Olteanu, Niculae Ene and Petru Nita, Diffusion layers with Ti and Ti+Al formed on 316L austenitic steel by a pack cementation procedure, Defect Diffus. Forum, 312-315 (2011) 13-19.

DOI: 10.4028/www.scientific.net/ddf.312-315.13

Google Scholar

[25] R. Gopal, C. Calvo, J. Ito and W. K. Sabine, Crystal structure of synthetic Mg-Whitlockite, Ca18Mg2H2(PO4)14, Can. J. Chemistry, 52 (1974) 1155-1164.

DOI: 10.1002/chin.197425016

Google Scholar

[26] M.S. Sader, E.L. Moreira, V.C.A. Moraes, J.C. Araújo, R.Z. LeGeros and G.A. Soares, Rietveld refinement of sintered magnesium substituted calcium apatite, Key Eng. Mater., 396-398 (2009) 277-280.

DOI: 10.4028/www.scientific.net/kem.396-398.277

Google Scholar

[27] A. Ito and R.Z. LeGeros, Magnesium- and Zinc-substituted beta-tricalcium phosphates as potential bone substitute biomaterials, Key Eng. Mater., 377 (2008) 85-98.

DOI: 10.4028/www.scientific.net/kem.377.85

Google Scholar