Integrated Motile Orbital Implants Based on Ceramic Foam Scaffolds: Preparation and In Vivo Study

Article Preview

Abstract:

Zirconia-alumina ceramic foam scaffolds with a nanocrystalline HAP coating were used for the preparation of integrated motile orbital implants. This study demonstrated that open-cell ceramic foams with enhanced strength-to-density ratio are quite suitable as biocompatible materials for the manufacture of orbital implants for post-enucleation syndrome treatment. In-vivo studies demonstrated that the application of a nanocrystallyne (not sintered) HAP coating facilitated the formation of dense fibrous capsule around the implant as well as the fast tissue ingrowth into the implant’s internal space. Orbital implants with the optimized pore size and HAP content were implanted to the animal’s eye cavity with their fixation to the extraocular muscles, and their motility was ensured.

You might also be interested in these eBooks

Info:

Pages:

41-53

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.A. Hing, Bone repair in the twenty-first century: biology, chemistry or engineering?, Phil. Trans. R. Soc. Lond. A. 362 (2004) 2821–2850.

Google Scholar

[2] S.E. Feinberg, T.L. Aghaloo, L.L. Cunningham, Role of tissue engineering in oral and maxillofacial reconstruction, Findings of the 2005 AAOMS Research Summit, J. Oral Maxillofac. Surg. 63 (2005)1418-1425.

DOI: 10.1016/j.joms.2005.07.004

Google Scholar

[3] P. Ducheyne, Q. Qiu, Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function, Biomaterials. 20 (1999) 2287-2303.

DOI: 10.1016/s0142-9612(99)00181-7

Google Scholar

[4] G. Heness, B. Ben-Nissan, Innovative bioceramics, Materials Forum. 27 (2004) 104-114.

Google Scholar

[5] L.F. Liang, X.Y. Han, X.C. Yan, W. Jie, Reinforcing of Porous Hydroxyapatite Ceramics with Hydroxyapatite Fibres for Enhanced Bone Tissue Engineering, J. Biomim. Biomater. Tissue Eng. 10 (2011) 67-73.

DOI: 10.4028/www.scientific.net/jbbte.10.67

Google Scholar

[6] E. Soh, A.J. Ruys, Characterisation of foamed porous alumina tissue scaffolds, J. Biomim. Biomater. Tissue Eng. 4 (2009) 21-26.

DOI: 10.4028/www.scientific.net/jbbte.4.21

Google Scholar

[7] W. Cao, L.L. Hench, Bioactive materials, Ceram. Int. 22 (1996) 493-507.

Google Scholar

[8] M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo, T. Nakamura, Mechanical properties and osteoconductivity of porous bioactive titanium, Biomaterials. 26 (2005) 6014–6023.

DOI: 10.1016/j.biomaterials.2005.03.019

Google Scholar

[9] B.L. Seal, N.C. Otero, A. Pantich, Polymeric biomaterials for tissue and organ regeneration, Mat. Sci. Eng. R. 34 (2001) 147-230.

Google Scholar

[10] A. Abarrategi, M.C. Gutiérrez, C. Moreno-Vicentea, M.J. Hortigüela, V. Ramosa, et al. Multiwall carbon nanotube scaffolds for tissue engineering purposes, Biomaterials. 29 (2008) 94–102.

DOI: 10.1016/j.biomaterials.2007.09.021

Google Scholar

[11] R. Chalasani, L. Poole-Warren, M. Conway, B. Ben-Nissan. Porous Orbital Implants in Enucleation: A Systematic Review, Surv. Ophthalmol. 52 (2007) 145-155.

DOI: 10.1016/j.survophthal.2006.12.007

Google Scholar

[12] D. Sami, S. Young, R. Petersen, Perspective on Orbital Enucleation Implants, Surv. Ophthalmol. 52 (2007) 244-265.

DOI: 10.1016/j.survophthal.2007.02.007

Google Scholar

[13] A. Perry, Porous orbital implant structure, US Patent 6, 063, 117 (2000).

Google Scholar

[14] D.M. Roy, S.K. Linnehan, Hydroxyapatite formed from Coral Skeletal Carbonate by Hydrothermal Exchange, Nature. 247 (1974) 220-222.

DOI: 10.1038/247220a0

Google Scholar

[15] A. Perry, Device for orbital implant, US Patent 4, 976, 731 (1990).

Google Scholar

[16] M. Governa, G. Marchini, C. Brunelli, A. Dall'Antonia, D. Barisoni, Hydroxyapatite orbital implant covered with fascia lata in post-enucleation eye reconstruction, Eur. J. Plast Surg. 26 (2003) 331-334.

DOI: 10.1007/s00238-003-0559-9

Google Scholar

[17] J.P. Adenis, M.P. Boncoeur-Martel, P.Y. Robert, Hydroxyapatite orbital implant exposure: symptoms, physiopathology, treatment, in: R. Guthoff, J.A. Katowitz (Eds. ), Oculoplastics and Orbit, Springer, 2007, 171-180.

DOI: 10.1007/978-3-540-33677-8_11

Google Scholar

[18] P. Custer, R.H. Kennedy, J.J. Woog, J.J. Kaltreider, Orbital implants in enucleation surgery. A report by the American Academy of Ophthalmology, Ophthalmology. 110 (2003) 2054-(2061).

DOI: 10.1016/s0161-6420(03)00857-1

Google Scholar

[19] M. Vittorino, F. Serrano, F. Suárez, Enucleation and evisceration: 370 cases review. Results and complications, Arch. Soc. Esp. Oftalmol. 82 (2007) 495-500.

Google Scholar

[20] J.S. Song, O.Y. Oh, S.H. Baek, A survey of satisfaction in anophthalmic patients wearing ocular prosthesis, Graef. Arch. Clin. Exp. Ophthalmol. 244 (2006) 330–335.

DOI: 10.1007/s00417-005-0037-0

Google Scholar

[21] B. Kundu, M.K. Sinha, S. Mitra, D. Basu, Synthetic hydroxiapatite-based integrated orbital implants: a human pilot trial, Indian J. Ophthalmol. 53 (2005) 235-241.

DOI: 10.4103/0301-4738.18904

Google Scholar

[22] P. Viswanathan, M.S. Sagoo, J.M. Olver. UK national survey of enucleation, evisceration and orbital implant trends, Brit. J. Ophthalmol. 91 (2007) 616-619.

DOI: 10.1136/bjo.2006.103937

Google Scholar

[23] K. Pal, S. Bag, S. Pal, Development of porous ultra-high molecular weight polyethylene scaffolds for the fabrication of orbital implant, J. Porous Mater. 15 (2008) 53–59.

DOI: 10.1007/s10934-006-9051-9

Google Scholar

[24] L. Montanaro, Y. Jorand, G. Fantozzi, A. Negro, Ceramic Foams by Powder Processing, J. Eur. Ceram. Soc. 8 (1998) 1339-1350.

DOI: 10.1016/s0955-2219(98)00063-6

Google Scholar

[25] H.R. Ramay, M. Zhang, Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods, Biomaterials. 24 (2003) 3293–3302.

DOI: 10.1016/s0142-9612(03)00171-6

Google Scholar

[26] Y.K. Jun, W.H. Kim, O.K. Kweon, S.H. Hong, The fabrication and biochemical evaluation of alumina reinforced calcium phosphate porous implants, Biomaterials. 24 (2003) 3731–3739.

DOI: 10.1016/s0142-9612(03)00248-5

Google Scholar

[27] A.R. Fariza, A. Zuraida, I. Sopyan. Application of low cost polyurethane foam for fabricating porous tri-calcium phosphate, J. Biomim. Biomater. Tissue Eng. 8 (2010) 1-7.

DOI: 10.4028/www.scientific.net/jbbte.8.1

Google Scholar

[28] J. Liu, Z. Dong, X. Miao, Porous alumina-zirconia composite scaffold with bioactive glass 58S33C coating, J. Biomim. Biomater. Tissue Eng. 6 (2010) 87-104.

DOI: 10.4028/www.scientific.net/jbbte.6.87

Google Scholar

[29] A.H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, R. Torrecillas, Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses, Biomaterials. 23 (2002) 937–945.

DOI: 10.1016/s0142-9612(01)00206-x

Google Scholar

[30] J. Brandt, S. Henning, G. Michler, W. Hein, A. Bernstein, M. Schulz, Nanocrystalline hydroxyapatite for bone repair: an animal study, J. Mater. Sci. –Mater. Med. 21 (2010) 283-294.

DOI: 10.1007/s10856-009-3859-1

Google Scholar

[31] A. Cuneyt Tas, F. Korkusuz, M. Timucin, N. Akkas, An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite and tricalcium phosphate bioceramics, J. Mater. Sci. -Mater. Med. 8 (1997) 91 - 96.

DOI: 10.1023/a:1018506800033

Google Scholar

[32] O.L. Smorygo, L.V. Tsedik, L.K. Yakhnitskaya, Y.D. Kovalenko, V.L. Krasilnikova, A.I. Kulak, L.A. Lesnikovich, Orbital implant, Belarus Patent 1, 385 (2004).

Google Scholar

[33] O. Smorygo, V. Mikutski, A. Marukovich, A. Ilyushchanka, V. Sadykov, A. Smirnova, An inverted spherical model of an open-cell foam structure, Acta Materialia. 59 (2011) 2669–2678.

DOI: 10.1016/j.actamat.2011.01.005

Google Scholar

[34] M.F. Ashby, The properties of foams and lattices, Phil. Trans. R. Soc. A. 364 (2006) 15–30.

Google Scholar

[35] R. Brezny, D.J. Green, Fracture behaviour of open-cell ceramics. J. Am. Ceram. Soc. 72 (1989) 1145-1152.

Google Scholar

[36] R. Brezny, D.J. Green, C.Q. Dam, Evaluation of strut strength in open-cell ceramics, J. Am. Ceram. Soc. 72 (1989) 885-889.

DOI: 10.1111/j.1151-2916.1989.tb06239.x

Google Scholar