Biomechanical Evaluation of Different Techniques in Double Bundle Anterior Cruciate Ligament Reconstruction Using Finite Element Analysis

Article Preview

Abstract:

Anterior cruciate ligament injuries commonly in traffic accident, sports activities and extreme sports. Anterior cruciate ligament reconstruction is a common practice to help the patients restore the knee stability. However, there is no previous comparison study of single bundle reconstruction, double-femoral double-tibial tunnel reconstruction, single-femoral double-tibial tunnel reconstruction, and double-femoral single-tibial tunnel reconstruction with respect to biomechanical characteristics such as rotational stability, force and stress inside the ligament and grafts, stresses inside the soft tissues. In this study, we developed a pair of three-dimensional finite element models of a lower extremity including femur, tibia, fibula, cartilage, meniscus, and four major ligaments at 0°,25°,60° and 80°of knee flexion. Based on the intact models, single bundle reconstruction, double-femoral double-tibial tunnel reconstruction, single-femoral double-tibial tunnel reconstruction, and double-femoral single-tibial tunnel reconstruction models were also developed. Then, the anterior tibial translations, the forces and stresses inside the ACL and ACL replacements, as well as the stresses inside the menisci, femoral and tibial cartilage were predicted under a combined rotatory load of 10Nm valgus moment and 5 Nm internal torque, respectively using finite element analysis. The rotational stability, ligament forces and stresses in the menisci, femoral and tibial cartilage following double bundle augmentation were superior to the other reconstruction techniques, while there is little advantage in ligament stress compared to that of the single bundle reconstruction. We conclude that double-femoral double-tibial tunnel reconstruction may have advantages with regard to biomechanical characteristics such as rotational stability, force inside the ligament and grafts, stresses inside the soft tissues.

You might also be interested in these eBooks

Info:

Pages:

55-68

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. G Girgis, J. L Marshall, A.R. S Monajem, The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis, Clin Orthop Relat Res. 106 (1975) 216-231.

DOI: 10.1097/00003086-197501000-00033

Google Scholar

[2] C. D Harner, R. Giffin, R. C Dunteman, C. C Annunziata, M. J Friedman, Evaluation and treatment of recurrent instability after anterior cruciate ligament reconstruction. J. Bone Joint Surg. A. 82, (2000) 1652-1663.

DOI: 10.2106/00004623-200011000-00020

Google Scholar

[3] A. Kanamori, J. Zeminski, T. W Rudy, G. Li, F. H Fu, S. L Woo, The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test, Arthroscopy . 18 (2002) 394-398.

DOI: 10.1053/jars.2002.30638

Google Scholar

[4] T. Zantop, M. Herbort, M. J Raschke, F. H Fu, W. Petersen, The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation, Am J Sports Med . 35 (2007) 223-227.

DOI: 10.1177/0363546506294571

Google Scholar

[5] K. Yasuda, E. Kondo, H. Ichiyama, Anatomic reconstruction procedure for the anteromedial and posterolateral bundles of the anterior cruciate ligament, Kansetsukyo (J Jpn Arthrosc Assoc). 28 (2003) 17-23.

Google Scholar

[6] K. Yasuda, E. Kondo, H. Ichiyama, N. Kitamura, Y. Tanabe, H. Tohyama, A. Minami, Anatomical reconstruction of the anteromedial and posterolateral bundles of the anterior cruciate ligament using hamstring tendon grafts, Arthroscopy 20 (2004).

DOI: 10.1016/j.arthro.2004.08.010

Google Scholar

[7] C. D Harner, G. G Poehling, Double bundle or double trouble?, Arthroscopy 20 (2004) 1013-1014.

DOI: 10.1016/j.arthro.2004.10.002

Google Scholar

[8] D. A Frank, G. T Altman, P. Re, Hybrid Anterior Cruciate Ligament Reconstruction: Introduction of a New Technique for Anatomic Anterior Cruciate Ligament Reconstruction, Arthroscopy 23 (2007) 1354. e1-5.

DOI: 10.1016/j.arthro.2007.01.001

Google Scholar

[9] M. Yagi, E. K Wong, A. Kanamori, R. E Debski, F. H Fu, S. L Woo, Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction, Am J Sports Med. 30 (2002) 660-666.

DOI: 10.1177/03635465020300050501

Google Scholar

[10] M. Hamada, K. Shino, S. Horibe, T. Mitsuoka, T. Miyama, Y. Shiozaki, T. Mae, Single versus bi-socket anterior cruciate ligament reconstruction using autogenous multiple-stranded hamstring tendons with endobutton femoral fixation: a prospective study. Arthroscopy, 17 (2001).

DOI: 10.1053/jars.2001.25251

Google Scholar

[11] N. Adachi, M. Ochi, Y. Uchio, J. Iwasa, M. Kuriwaka, Y. Ito, Reconstruction of the anterior cruciate ligament. Single versus double-bundle multi-stranded hamstring tendons, Bone Jt Surg Br. 86 (2004) 515-520.

DOI: 10.1302/0301-620x.86b4.14856

Google Scholar

[12] J. Suggs, C. Wang, G. Li, The effect of graft stiffness on knee joint biomechanics after ACL reconstruction: a 3D computational simulation, Clin. Biomech. 18 (2003) 35-43.

DOI: 10.1016/s0268-0033(02)00137-7

Google Scholar

[13] E. Pena, M. A Martinez, B. Calvo, A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction, Clinical Biomechanics, 20 (2005) 636-644.

DOI: 10.1016/j.clinbiomech.2004.07.014

Google Scholar

[14] N.A. Ramaniraka, P. Saunier, O. Siegrist, Biomechanical evaluation of intra-articular and extra-articular procedures in anterior cruciate ligament reconstruction: A finite element analysis, Clinical Biomechanics. 22 (2007) 336-343.

DOI: 10.1016/j.clinbiomech.2006.10.006

Google Scholar

[15] K. H Yoon, Y. H Kim, J. H Ha, K. Kim, W. M Park, Biomechanical evaluation of double bundle augmentation of posterior cruciate ligament using finite element analysis, Clinical Biomechanics. 25 (2010) 1042-1046.

DOI: 10.1016/j.clinbiomech.2010.07.014

Google Scholar

[16] M. K Kaseta, L. E DeFrate, B. L Charnock, R. T Sullivan, W. E Garrett Jr., Reconstruction Technique Affects Femoral Tunnel Placement in ACL Reconstruction. Clin Orthop Relat Res. 466 (2008) 1467-1474.

DOI: 10.1007/s11999-008-0238-z

Google Scholar

[17] J.W. H Luites, A. B Wymenga, L. Blankevoort, J.G. M Kooloos, Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement, Knee Surg Sports Traumatol Arthrosc. 15 (2007).

DOI: 10.1007/s00167-007-0402-0

Google Scholar

[18] G. Li, J. Suggs, T. Gill, The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: a three-dimensional computational simulation, Ann. Biomed. Eng. 30 (2002) 713-720.

DOI: 10.1114/1.1484219

Google Scholar

[19] E. Pena, B. Calvo, M. A Martinez, M. Doblare, A three-dimensional finite element analysis of the combined behaviour of ligaments and menisci in the healthy human knee joint, J Biomech. 39 (2006) 1686-1701.

DOI: 10.1016/j.jbiomech.2005.04.030

Google Scholar

[20] C. Jacobs, Numerical simulation of bone adaption to mechanical loading. Ph.D. thesis. Stanford University, Stanford, California, (1994).

Google Scholar

[21] C. Armstrong, W. Lai, An analysis of the unconfined compression of articular cartilage, Journal of Biomechanical Engineering, 106 (1984) 165-173.

DOI: 10.1115/1.3138475

Google Scholar

[22] G. Li, O. Lopez, H. Rubash, Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis, ASME J. Biomech. Eng. 123 (2001) 341-346.

DOI: 10.1115/1.1385841

Google Scholar

[23] K. Athanasiou, R. Fisher, G. Niederuer, W. Puhl, Effects of excimer laser on healing of articular cartilage in rabbits, J. Orthopaed. Res. 13 (1995) 483-494.

DOI: 10.1002/jor.1100130403

Google Scholar

[24] C. S Proctor, M. B Schmidt, M. A Kelly, V. C Mow, Material properties of the normal medial bovine meniscus, J. Orthop. Res. 7 (1989) 771-782.

DOI: 10.1002/jor.1100070602

Google Scholar

[25] J. Weiss, Finite element implementation of incompressible, transversely isotropic hyperelasticity, Computer Methods and Applications in Mechanical Engineering. 135 (1996) 107-128.

DOI: 10.1016/0045-7825(96)01035-3

Google Scholar

[26] J. Gardiner, J. Weiss, Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading, J Orthopeadic Res. 21 (2003) 1098-1106.

DOI: 10.1016/s0736-0266(03)00113-x

Google Scholar

[27] D. L Butler, M. Sheh, D. Stouffer, V. Samaranayake, M. Levy, Surface strain variation in human patellar tendon and knee cruciate ligaments. J. Biomech. Eng. 39 (1990) 38-45.

DOI: 10.1115/1.2891124

Google Scholar

[28] K. E. Moglo, A. Shirazi-Adl, Cruciate coupling and screw-home mechanism in passive knee joint during extension-flexion, Journal of Biomechanics. 38 (2005) 1075-1083.

DOI: 10.1016/j.jbiomech.2004.05.033

Google Scholar

[29] M. T Gabriel, E. K Wong, S. L Woo, M. Yagi, R. E Debski, Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads, Journal of Orthopedic Research. 22 (2004) 85-89.

DOI: 10.1016/s0736-0266(03)00133-5

Google Scholar

[30] O. C Brantigan, A. F Voshell, The mechanics of the ligaments and menisci of the knee joint, J Bone Joint Surg. 23 (1941) 44-66.

Google Scholar

[31] T. Zantop, M. Herbort, M. J Raschke, F. H Fu, W. Petersen, The role of the Anteromedial and Posterolateral Bundles of the Anterior Cruciate Ligament in Anterior Tibial Translation and Internal Rotation, Am J Sports Med. 35 (2007) 223.

DOI: 10.1177/0363546506294571

Google Scholar

[32] P. Kannus, M. Jarvinen, Conservatively treated tears of the anterior cruciate ligament Long-term results, J Bone Joint Surg Am 69 (1987) 1007-1012.

DOI: 10.2106/00004623-198769070-00008

Google Scholar

[33] S. L Woo, R. E Debski, E. K Wong, M. Yagi, D. Tarinelli, Use of robotic technology for diathrodial joint research, J Sci Med Sport. 2 (1999) 283-297.

DOI: 10.1016/s1440-2440(99)80002-4

Google Scholar

[34] K. L Markolf, S. Park, S. R Jackson, D. R McAllister, Anterior-posterior and rotatory stability of single and double-bundle anterior cruciate ligament reconstructions, J Bone Joint Surg Am. 91 (2009) 107-118.

DOI: 10.2106/jbjs.g.01215

Google Scholar

[35] J. K Seon, E. K Song, S. J Park, Osteoarthritis after anterior cruciate ligament reconstruction using a patellar tendon autograft, International Orthopaedics (SICOT). 30 (2006) 94-98.

DOI: 10.1007/s00264-005-0036-0

Google Scholar

[36] J. K Seon, S. J Park, K. B Lee, T. R Yoon, Stability comparison of anterior cruciate ligament between double- and single-bundle reconstructions, International Orthopaedics (SICOT). 33 (2009) 425-429.

DOI: 10.1007/s00264-008-0530-2

Google Scholar

[37] A. G Tsai, C. A Wijdicks, M. P Walsh, R. F LaPrade, Comparative Kinematic Evaluation of All-Inside Single-Bundle and Double-Bundle Anterior Cruciate Ligament Reconstruction A Biomechanical Study, Am J Sports Med . 38 (2010) 263.

DOI: 10.1177/0363546509348053

Google Scholar

[38] C. Wu, S. Noorani, F. Vercillo, S. L Woo, Tension Patterns of the Anteromedial and Posterolateral Grafts in a Double-Bundle Anterior Cruciate Ligament Reconstruction, J Orthop Res. 27 (2009) 879-884.

DOI: 10.1002/jor.20822

Google Scholar

[39] B. A Zelle, A. F Vidal, P. U Brucker, F. H Fu, Double-bundle reconstruction of the anterior cruciate ligament: anatomic and biomechanical rationale, J Am Acad Orthop Surg. 15 (2007) 87-96.

DOI: 10.5435/00124635-200702000-00003

Google Scholar

[40] Y. Morimoto, M. Ferretti, M. Ekdahl, P. Smolinski, F. H Fu, Tibiofemoral joint contact area and pressure after single- and double-bundle anterior cruciate ligament reconstruction, Arthroscopy. 25 (2009) 62-69.

DOI: 10.1016/j.arthro.2008.08.014

Google Scholar