Microwave Sintering of Al2O3 Fiber-Reinforced Hydroxyapatite Matrix Composites

Article Preview

Abstract:

Al2O3 Fiber-reinforced HAp was sintered using microwave and conventional heating. Microwave heating cycles were ~50 times faster than conventional sintering cycles and enabled the use of reduced densification temperatures and soak times by as much as ~100°C and 55 min, respectively. However, although there was a significant improvement in densification levels attainable before decomposition, the improvements were insufficient to produce near-fully or fully dense samples.

You might also be interested in these eBooks

Info:

Pages:

91-104

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Monmaturapoj and C. Yatongchai, Effect of Sintering on Microstructure and Properties of Hydroxyapatite Produced by Different Synthesizing Methods, Journal of Metals, Materials and Minerals, Vol. 20 No. 2 pp.53-61, (2010).

Google Scholar

[2] J. Majling, P. Znáik, A. Palová, S. Svetík, S. Kovalík, D. K Agrawal, R. Roy, Sintering of the ultrahigh pressure densified hydroxyapatite monolithic xerogels, J. Mater. Res., Vol. 12, No. 1, Jan (1997).

DOI: 10.1557/jmr.1997.0026

Google Scholar

[3] J. A Delgado, L. Morejón, S. Martínez, M. P Ginebra, N. Carlsson, E. Fernández, J. A Planell, M. T Clavaguera-Mora, and J. Rodríguez-Viejo, Zirconia-toughened hydroxyapatite ceramic obtained by wet sintering, Journal of Material Science: Materials in Medicine, Vol. 10, No. 12, pp.715-719, (1999).

DOI: 10.1023/a:1008923121172

Google Scholar

[4] A. M Knepper, B. K Milthorpe, S. Morica, Interdiffusion in short-fiber reinforced hydroxyapatite ceramics, Journal of Material Science: Materials in Medicine, Vol. 9, No. 10, pp.589-596, (1998).

Google Scholar

[5] A. A White, I. A Kinloch, A. H Windle, S. M Best, Optimization of the sintering atmosphere for high-density hydroxyapatite-carbon nanotube composites, Journal of the Royal Society Interface (2010) 7, S529–S539.

DOI: 10.1098/rsif.2010.0117.focus

Google Scholar

[6] F. N Oktar, S. Agathopoulos, L. S Ozyegin, O. Gunduz, N. Demikol, Y. Bozkurt, S. Salman, Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2, Journal of Material Science: Materials in Medicine, Vol. 18, No. 11, pp.2137-2143, (2007).

DOI: 10.1007/s10856-007-3200-9

Google Scholar

[7] Y. Nayak, R. P Rana, S. K Pratihar, S. Bhattacharyya, Pressureless sintering of dense hydroxyapatite-zirconia composites, Journal of Material Science: Materials in Medicine, Vol. 19, No. 6, pp.2437-2444, (2008).

DOI: 10.1007/s10856-008-3371-z

Google Scholar

[8] D. J Curran, T. J Fleming, G. Kawachi, M. R Towler, Characterisation and mechanical testing of hydrothermally treated HA/ZrO2 composites, Journal of Material Science: Materials in Medicine, Vol. 20, No. 11, pp.2235-2241, (2009).

DOI: 10.1007/s10856-009-3801-6

Google Scholar

[9] S. Hesaraki, T. Ebadzadeh, S. Ahmadzadeh-Asl, Nanosilicon carbide/hydroxyapatite nanocomposites: structural, mechanical and in vitro cellular properties, Journal of Material Science: Materials in Medicine, Vol. 21, No. 7, pp.2141-2149, (2010).

DOI: 10.1007/s10856-010-4068-7

Google Scholar

[10] O. Gunduz, E. M Erkan, S. Daglilar, S. Salman, S. Agathopoulos, F. N Oktar, Composites of bovine hydroxyapatite (BHA) and ZnO, Journal of Material Science, Vol. 43, No. 8, pp.2536-2540, (2008).

DOI: 10.1007/s10853-008-2497-1

Google Scholar

[11] R. Ramachandra Rao, and T. S Kannan, Synthesis and sintering of hydroxyapatite-zirconia composites, Materials Science and Engineering C 20, 187–193, (2002).

DOI: 10.1016/s0928-4931(02)00031-0

Google Scholar

[12] S. L Shi, W. Pan, Machinable Ti 3 SiC 2 /Hydroxyapatite Bioceramic Composites by Spark Plasma Sintering, Journal of the American Ceramic Society Vol. 90, No. 10, P. 3331-3333 (2007).

DOI: 10.1111/j.1551-2916.2007.01882.x

Google Scholar

[13] W. R Weinand, F.F. R Goncalves, W. M Lima, Effect of Sintering Temperature in Physical-Mechanical Behaviour and in Titanium-Hydroxyapatite Composite Sinterability, Materials Science Forum, Vol. 530-531, P249, (2006).

DOI: 10.4028/www.scientific.net/msf.530-531.249

Google Scholar

[14] H. Kim, Y. Kong, Y. Koh, H. Kim, Pressureless Sintering and Mechanical and Biological Properties of Fluor-hydroxyapatite Composites with Zirconia, J. Am. Ceram. Soc., 86.

DOI: 10.1111/j.1151-2916.2003.tb03602.x

Google Scholar

[12] 2019-26 (2003).

Google Scholar

[15] A. Szewczyk-Nykiel, M. Nykiel, Study of hydroxyapatite behaviour during sintering of 316L steel, Archives of Foundry Engineering Vol. 10, Special Issue 3/2010, 235-240.

Google Scholar

[16] K. Haberko, Natural hydroxyapatite – its behaviour during heat treatment, Journal of the European Ceramic Society, vol. 26, 2006, pp.537-542.

DOI: 10.1016/j.jeurceramsoc.2005.07.033

Google Scholar

[17] K.A. Khalil, S. W Kim, High-Frequency Induction Heating Sintering of Hydroxyapatite-(ZrO2+3%Mol Y2O3) Bioceramics, Materials Science Forum Vols. 534-536 (2007) pp.1033-1036.

DOI: 10.4028/www.scientific.net/msf.534-536.1033

Google Scholar

[18] K. A Zeigler, A. J Ruys, C. C Sorrell, B. K Milthorpe, A. Brandwood, Interfacial Analysis of Hydroxyapatite-Particulate Addition Composites,. pp.623-28 In Ceramics: Adding the Value, Volume 2 (proceedings of the International Ceramic Conference, Austceram 92). Edited by M.J. Bannister. CSIRO Publications, Melbourne, (1992).

Google Scholar

[19] K. A Zeigler, A. J Ruys, C. C Sorrell, Interdiffusion in Hydroxyapatite Composites, pp.175-84 in Proceedings of the 3rd Australian Forum on Metal Matrix Composites. Edited by S. Bandyopadhyay and A. G Crosky. IMMA, Sydney, (1992).

Google Scholar

[20] A. J Ruys, K. A Zeigler, B. K Milthorpe, C. C Sorrell, Hydroxylapatite-Ceramic/Metal Composites: Quantification of Additive-Induced Dehydration, pp.591-97 in Ceramics: Adding the Value, Volume 1, Edited by M.J. Bannister. CSIRO Publications, Melbourne, (1992).

Google Scholar

[21] J. Weng, X. Liu, X. Zhang, X. Ji, Thermal Decomposition of Hydroxyapatite Structure Induced by Titanium and its Dioxide, J. Mater. Sci. Lett., 13, 159-61 (1994).

DOI: 10.1007/bf00278148

Google Scholar

[22] I. Teoreanu, M. Preda, A. Melinescu, Synthesis and characterization of hydroxyapatite by microwave heating using CaSO4·2H2O and Ca(OH)2 as calcium source, Journal of Material Science: Materials in Medicine, Vol. 19, No. 2, pp.517-523, (2007).

DOI: 10.1007/s10856-006-0038-5

Google Scholar

[23] D.J. Currab, T.J. Fleming, M. R Towler, S. Hampshire, Mechanical properties of hydroxyapatite-zirconia compacts sintered by two different sintering methods, Journal of Material Science: Materials in Medicine, Vol. 21, No. 4, pp.1109-1120, (2009).

DOI: 10.1007/s10856-009-3974-z

Google Scholar

[24] S. Nath, B. Basu, A. Sinha, A Comparative Study of Conventional Sintering with Microwave Sintering of Hydroxyapatite Synthesized by Chemical Route, Trends Biomater. Artif. Organs, Vol 19(2), pp.93-98, (2006).

Google Scholar

[25] H. Abdelhamid, B. Djamel, K. Noureddine, M. Fatima-Zohra, Sintering of bioceramics using a modified domestic microwave oven: Natural hydroxyapatite sintering, Journal of thermal analysis and calorimetry, Vol. 104, No. 1 pp.383-388, (2011).

DOI: 10.1007/s10973-010-1115-z

Google Scholar

[26] W. H Sutton, Microwave Processing of Ceramics - An Overview, pp.3-20 in Microwave Processing of Materials III (Mater. Res. Soc. Proc, Volume 269). Edited by R. L Beatty, W.H. Sutton, and M. F Iskandar. Materials Research Society, Pittsburgh, PA, (1992).

DOI: 10.1557/proc-269-3

Google Scholar

[27] Y. Fang, D. M Roy, J. Cheng, R. Roy, D. K Agrawal, Microwave Sintering of Hydroxyapatite-Based Composites, pp.397-406 in Ceramic Transactions, Volume 36 (Microwaves: Theory and Applications in Materials Processing II). Edited by D. E Clark, W. R Tinga, J. R Laia, Jr. American Ceramic Society, Westerville, OH, (1993).

DOI: 10.1080/10426919808935244

Google Scholar

[28] N. Ehsani, A. J Ruys, C. C Sorrell, Thixotropic Casting of Fecralloy®-Fiber-Reinforced Hydroxyapatite, Key Eng. Mater. 104.

DOI: 10.4028/www.scientific.net/kem.104-107.373

Google Scholar

[1] 373-80 (1995).

Google Scholar

[29] S. Das, A. K Mukhopadhyay, S. Datta, D. Basu, Prospects of microwave processing: An overview, Bull. Mater. Sci., Vol. 32, No. 1, February 2009, p.1–13.

DOI: 10.1007/s12034-009-0001-4

Google Scholar

[30] K. Yamashita, H. Owada, H. Nakagawa, T. Umegaki, T. Kanazawa, Trivalent-Cation-Substituted Calcium Oxyhydroxyapatite, J. Am. Ceram. Soc., 69.

DOI: 10.1002/chin.198644338

Google Scholar

[8] 590-94 (1986).

Google Scholar

[31] A. J Ruys, K. A Zeigler, O. C Standard, A. Brandwood, B. K Milthorpe, C. C Sorrell, Hydroxyapatite Sintering Phenomena: Densification and Dehydration Behaviour, pp.605-10 in Ceramics: Adding the Value, Volume 2. Edited by M.J. Bannister. CSIRO Publications, Melbourne, (1992).

Google Scholar

[32] G. Xu, I. Lloyd, Y. Carmel, T. Olorunyolemi, O. Wilson, Jr, Microwave sintering of ZnO at ultra high heating rates, J. Mater. Res., Vol. 16, No. 10, Oct (2001).

DOI: 10.1557/jmr.2001.0393

Google Scholar

[33] M. A Janney and H. D Kimrey, Microwave Sintering of Alumina at 28 GHz, pp.919-24 in Ceramic Transactions, Volume I (Ceramic Powder Science II). Edited by G.L. Messing, E.R. Fuller, and H. Hausner. American Ceramic Society, Westerville, OH, (1988).

Google Scholar

[34] Y. Fang, D. K Agrawal, D. M Roy, R. Roy, Microwave Sintering of Hydroxyapatite Ceramics, J. Mater. Res., 9.

Google Scholar

[1] 180-87 (1994).

Google Scholar

[35] Y. Fang, D. K Agrawal, D. M Roy, R. Roy, Fabrication of Porous Hydroxyapatite Ceramics by Microwave Processing, J. Mater. Res., 7.

Google Scholar

[2] 490-94 (1994).

Google Scholar

[36] Y. Fang, D. K Agrawal, D. M Roy, R. Roy, Rapid Sintering of Hydroxyapatite Ceramics by Microwave Processing, pp.349-56 in Ceramic Transactions, Volume 21 (Microwaves: Theory and Applications in Materials Processing I). Edited by D.E. Clark, F.D. Gac and W.H. Sutton. American Ceramic Society, Westerville, OH, (1991).

Google Scholar

[37] M. A Janney, H. D Kimrey, Microstructure Evolution in Microwave Sintered Alumina, in Advances in Sintering. Edited by J. Bleninger and C. Handwerker. American Ceramic Society, Westerville, OH, (1990).

Google Scholar

[38] G. E Fanslow, Microwave Enhancement of Chemical and Physical Reactions, pp.43-48 in Microwave Processing of Materials II (Mater. Res. Soc. Proc, Volume 189). Edited by W. B Synder, Jr., W. H Sutton, M. F Iskander, D. L Johnson. Materials Research Society, Pittsburgh, PA, (1991).

Google Scholar

[39] A. Dé, I. Ahmad, E. D Whitney, D. E Clark, Effect of Green Microstructure on Microwave Processing of Alumina: Effect of Particle Size, Ceram. Eng. Sci. Proc., 11 [9-10] 1743-53 (1990).

DOI: 10.1557/proc-189-283

Google Scholar

[40] M. A Janney, M. L Jackson, H. D Kimrey, Microwave Sintering of ZrO2-12 mol% CeO2, pp.101-108 in Ceramic Transactions, Volume 36 (Microwaves: Theory and Applications in Materials Processing II). Edited by D. E Clark, W. R Tinga, J. R Laia, Jr. American Ceramic Society, Westerville, OH, (1993).

DOI: 10.1080/10426919808935244

Google Scholar

[41] J. Zhang, Y. Yang, L. Cao, S. Chen, X. Shong, F. Xia, Microwave Sintering of Nanocrystalline ZrO2 Powders, pp.591-597 in Microwave Processing of Materials IV (Mater. Res. Soc. Proc. 347). Edited by M. F Iskandar, R. J Lauf, and W. H Sutton. Materials Research Society, Pittsburgh, PA, (1994).

Google Scholar

[42] S. A Nightingale, R.H. J Hannink, S. Street, Fabrication and Characterization of Microwave Sintered Zirconia Ceramics, pp.299-309 in Science and Technology of Zirconia V. Edited by S.P. S Badwal, M. S Bannister, R.H. J Hannink. Technomic Publishing Co. Inc, Lancaster, PA, (1993).

Google Scholar

[43] C. E Holcombe, N. L Dykes, Microwave Sintering of Titanium Diboride, J. Mater. Sci., 26, 3730-38 (1991).

DOI: 10.1007/bf01184963

Google Scholar

[44] F.C. R Wroe, J. Samuels, Microwave Sintering of Advanced Ceramics, pp.39-51 in Engineering Ceramics (Brit. Ceram. Proc. No. 50). Edited by D.P. Thompson. British Ceramic Society. (1990).

Google Scholar

[45] J. D Katz, R. D Blake, J. J Petrovic, H. Sheinberg, Microwave Sintering of Boron Carbide, pp.219-26 in Microwave Processing of Materials I (Mater. Res. Soc. Proc, Volume 124). Edited by W.H. Sutton, M.H. Brooks, and I.J. Chabinsky. Materials Research Society, Pittsburgh, PA, (1988).

DOI: 10.1557/proc-124-219

Google Scholar

[46] M. A Janney, H. D Kimrey, Diffusion-Controlled Processes in Microwave-Fired Oxide Ceramics, pp.215-28 in Microwave Processing of Materials II (Mater. Res. Soc. Proc, Volume 189). Edited by W.B. Synder, Jr., W.H. Sutton, M.F. Iskander, and D.L. Johnson. Materials Research Society, Pittsburgh, PA, (1991).

DOI: 10.1557/proc-189-215

Google Scholar

[47] D. Demirskyi, D. Agrawal, A. Ragulya, Neck growth kinetics during microwave sintering of nickel powder, Journal of Alloys and Compounds 509 (2011) 1790–1795.

DOI: 10.1016/j.jallcom.2010.10.042

Google Scholar

[48] I. Ahmad, D. E Clark, Effect of Microwave Heating on Solid State Reactions of Ceramics, pp.605-12 in Ceramic Transactions, Volume 21 (Microwaves: Theory and Applications in Materials Processing I). Edited by D.E. Clark, F.D. Gac and W.H. Sutton. American Ceramic Society, Westerville, OH, (1991).

Google Scholar

[49] Z. Fathi, I. Ahmad, J. H Simmons, D. E Clark, A. R Lodding, Surface Modification of Sodium Aluminosilicate Glasses Using Microwave Energy, pp.623-30 in Ceramic Transactions, Volume 21 (Microwaves: Theory and Applications in Materials Processing I). Edited by D.E. Clark, F.D. Gac and W.H. Sutton. American Ceramic Society, Westerville, OH, (1991).

Google Scholar

[50] Z. Fathi, D. E Clark, R. Hutcheon, Surface Modification of Ceramics Using Microwave Energy, pp.347-52 in Microwave Processing of Materials III (Mater. Res. Soc. Proc, Volume 269). Edited by R. L Beatty, W.H. Sutton, and M.F. Iskandar. Materials Research Society, Pittsburgh, PA, (1992).

DOI: 10.1557/proc-269-347

Google Scholar

[51] J. Cheng, J. Qiu, J. Zhou, N. Ye, Densification Kinetics of Alumina During Microwave Sintering, pp.323-28 in Microwave Processing of Materials III (Mater. Res. Soc. Proc, Volume 269). Edited by R. L Beatty, W. H Sutton, M. F Iskandar. Materials Research Society, Pittsburgh, PA, (1992).

DOI: 10.1557/proc-269-323

Google Scholar

[52] I. Ahmad, D. E Clark, Effect of Microwave Heating on the Mass Transport in Ceramics, pp.287-96 in Ceramic Transactions, Volume 36 (Microwaves: Theory and Applications in Materials Processing II). Edited by D. E Clark, W. R Tinga, and J. R Laia, Jr. American Ceramic Society, Westerville, OH, (1993).

DOI: 10.1080/10426919808935244

Google Scholar

[53] Z. Fathi, D. C Folz, D. E Clark, R. Hutcheon, Surface Modification of Sodium Aluminosilicate Glasses Using Microwave Energy II, pp.333-40 in Ceramic Transactions, Volume 36 (Microwaves: Theory and Applications in Materials Processing II). Edited by D.E. Clark, W.R. Tinga, and J.R. Laia, Jr. American Ceramic Society, Westerville, OH, (1993).

DOI: 10.1080/10426919808935244

Google Scholar

[54] S. Freeman, J. Booske, R. Cooper, B. Meng, Microwave Radiation Effects on Ionic Current in Ionic Crystalline Solids, pp.479-88 in Microwave Processing of Materials IV (Mater. Res. Soc. Proc, Volume 347). Edited by M. F Iskander, R. J Lauf, W. H Sutton. Materials Research Society, Pittsburgh, PA, (1994).

DOI: 10.1557/proc-347-479

Google Scholar

[55] S. A Freeman, J. H Booske, R. F Cooper, B. Meng, J. Kieffer, B. J Reardon, Studies of Microwave Field Effects on Ionic Transport in Ionic Crystalline Solids, pp.213-20 in Ceramic Transactions, Volume 36 (Microwaves: Theory and Applications in Materials Processing II). Edited by D. E Clark, W. R Tinga, J. R Laia, Jr. American Ceramic Society, Westerville, OH, (1993).

DOI: 10.1080/10426919808935244

Google Scholar

[56] T. T Meek, R. D Blake, J. D Katz, J. R Bradberry, M. H Brooks, Cation Diffusion in Glass Using 2. 45 GHz Radiation, J. Mater. Sci. Lett., 7, 928-31 (1988).

DOI: 10.1007/bf00720733

Google Scholar

[57] B. Meng, J. Booske, R. Cooper, S. Freeman, Microwave Absorption in NaCl Crystal with Various Controlled Defect Conditions, pp.467-72 in Microwave Processing of Materials IV (Mater. Res. Soc. Proc, Volume 347). Edited by M. F Iskander, R. J Lauf, W. H Sutton. Materials Research Society, Pittsburgh, PA, (1994).

DOI: 10.1557/proc-347-467

Google Scholar

[58] J. H Booske, R. F Cooper, I. Dobson, Mechanisms for Nonthermal Effects on Ionic Mobility During Microwave Processing of Crystalline Solids, J. Mater. Res., 7.

DOI: 10.1557/jmr.1992.0495

Google Scholar

[2] 495-501 (1992).

Google Scholar

[59] T. T Meek, Proposed Model for the Sintering of a Dielectric in a Microwave Filed, J. Mater. Sci. Lett., 6, 638-40 (1987).

Google Scholar

[60] A. C Metaxas, R. J Meredith, Industrial Microwave Heating, Peter Peregrinus Ltd., London. (1983).

Google Scholar

[61] B. Rilley, Microwave Treatment of Ceramic Materials", pp.1233-61 in Ceramics Today - Tomorrow, s Ceramics. Edited by P. Vincenzini. Elsevier, B.V., (1991).

Google Scholar

[62] J. Zhang, L. Cao, F. Xia, Microwave Sintering of Si3N4 Ceramics, pp.329-34 in Microwave Processing of Materials III (Mater. Res. Soc. Proc, Volume 269). Edited by R. L Beatty, W. H Sutton, M. F Iskandar, Materials Research Society, Pittsburgh, PA, (1992).

Google Scholar

[63] F. F Lange Constrained Network Model for Predicting Densification Behaviour of Composite Powders, J. Mater. Res., 2, 59-65 (1987).

DOI: 10.1557/jmr.1987.0059

Google Scholar

[64] A. J Ruys, M. Wei, C. C Sorrell, M. R Dickson, A. Brandwood, B. K Milthorpe, Sintering Effects on the Strength of Hydroxyapatite, Biomater., 16.

DOI: 10.1016/0142-9612(95)98859-c

Google Scholar

[5] 409-15 (1995).

Google Scholar

[65] A. J Ruys, M. Wei, A. Brandwood, B. K Milthorpe, C. C Sorrell, The Effects of Excessive Sintering on the Properties of Hydroxyapatite, pp.586-90 in Ceramics: Adding the Value, Volume 1. Edited by M. J Bannister. CSIRO Publications, Melbourne, (1992).

Google Scholar