Designing Fail-Safe Biomaterials against Wear for Artificial Total Hip Replacement

Article Preview

Abstract:

This review paper presents a fail-safe approach in designing biomaterials against wear for application in an artificial total hip replacement in view of the recent advances in orthopedic bioengineering materials. It has been established that substantially different alloys should be used for minimizing wear in bearing surfaces. Frictional forces at these rubbing counter-faces must be minimized to prevent loosening of the femoral stem and acetabular socket assembly from their positions secured by the fixation agent. A comparative analysis of various wear-resistant biomaterials resulted in the lowest production of wear particles in a total hip where a ceramic socket articulates against the ceramic ball: it produces only 0.004 cubic millimeters of ceramic wear particles. Surface modification, through the application of coatings, offers the potential to reduce the wear rate without compromising the bulk mechanical behavior of the implant material. These hard coatings were found to include diamond-like carbon, amorphous diamond, and titanium nitride.

You might also be interested in these eBooks

Info:

Pages:

45-55

Citation:

Online since:

September 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Huda, K.W. Shi and R. Bulpett: Failure Analysis of a Steel Motor-Cycle Kick-Stand, Journal of Failure Analysis and Prevention, (ASM International), (2009) Article in Press.

Google Scholar

[2] M. Roe, A.A. Torrance: Tribology International, Vol. 41(11 ) (2008) pp.1102-1008.

Google Scholar

[3] G. Zhou, X. Li, Y. Yaowu Shi, B. Chang: Engineering Failure Analysis, Vol. 13(4) (2006) pp.606-614.

Google Scholar

[4] P.P. Pavoor et al.: Biomaterials, Vol. 27(8) (2006) pp.1527-1533.

Google Scholar

[5] D.R. Askeland and P.P. Phule: The Science and Engineering of Materials, Thomson Books/Cole, California, USA (2003).

Google Scholar

[6] M.M. Goudarzi, S.A.J. Jahromi and A. Nazarboland: Materials & Design Vol. 30(6) (2009) pp.2283-2288.

Google Scholar

[7] K. Lapper, M. James, J. Chashechkina, D.A. Rigney: Wear Vol. 203-204 (1997) pp.46-56.

DOI: 10.1016/s0043-1648(96)07475-3

Google Scholar

[8] D.A. Rigney: Fundamentals of Friction and Wear of Materials, American Society for Metals, Metals Park, OH (1981) pp.43-69.

Google Scholar

[9] A. Zeren, E. Feyzullahoylu, M. Zeren: Materials and Design, Vol. 28 (2007) pp.318-23.

Google Scholar

[10] G.C. Pratt: Materials for plain bearings, Int Metall Rev, Vol. 8 (1973) pp.62-68.

Google Scholar

[11] R. Kingsbury, Metals Handbook, 9th Ed., Vol. 3. Metals Park, OH: ASM International (1980) pp.802-822.

Google Scholar

[12] E. Booser, M. Khorasani: Applied Tribology Bearing Design and Lubrication, John Wiley, New York, (2001).

Google Scholar

[13] B. Ramamurt: J. Arthroplasty, Vol. 11 (1996) pp.852-855.

Google Scholar

[14] A. Wang: Wear, Vol. 203-204 (1997) pp.230-241.

Google Scholar

[15] D. Bennett, J. Orr, R. Baker: J. Arthroplasty, Vol. 15 (2000) pp.909-915.

Google Scholar

[16] A. Wang: Wear, Vol. 248 (2001) pp.38-47.

Google Scholar

[17] M. Turell, A. Wang, A. Bellare: Wear, Vol. 255 (2003) pp.1034-1039.

Google Scholar

[18] B.T.K. Barry, C.J. Thwaites: Tin and its Alloys and Compounds: Ellis Wood, UK, (1983).

Google Scholar

[19] T.B. Massalski: Binary Alloy Phase Diagrams. Metals Park, OH: American Society for Metals, USA (1982).

Google Scholar

[20] Williams, D.F. (Editor): Biocompatability of Orthopedic Implants, Vol. 1, Franklin Book Company, PA, USA (1982).

Google Scholar

[21] Gibbons, D.F., in: Materials for Orthopedic Joint Prostheses, edited by D.F. Williams, volume 1 of Biocompatability of Orthopedic Implants, chapter 4, Franklin Book Company, PA, USA (1982).

Google Scholar

[22] M.N. Helmus, D.F. Gibbons, and D. Cebon: Toxicologic Pathology, Vol. 36(1) (2008) pp.70-80.

Google Scholar

[23] T. Hryniewicz, R. Rockiki, and K. Rokosz: Corrosion, Vol. 64(8) (2008) pp.660-665.

Google Scholar

[24] W.D. Calister Jr., Materials Science and Engineering: An Introduction, John Wiley & Sons, New York, USA (2003).

Google Scholar

[25] H. Heisel et al.: J Bone Joint Surg-Am Vol. 85-A (2003) pp.1366-79.

Google Scholar

[26] S.M. Kurtz et al.: Biomaterials, Vol. 20 (1999) pp.1659-1688.

Google Scholar

[27] L. Savarino et al.: J Biomed Mater Res (Ap. l Biomater) Vol. 63 (2002) pp.467-474.

Google Scholar

[28] E. Ingham and J. Fisher: Proc. Inst. Mech. Eng. Part H-J. Eng. Med Vol. 214 (H1) (2000) pp.21-37.

Google Scholar

[29] P.A. Dearnley, Proc. Inst. Mech. Eng. Part H-J. Eng. Med., Vol. 213 (H ) (1999) pp.107-135.

Google Scholar

[30] R. Hauert,: Diamond Relat Mater, Vol. 12 (2003) pp.583-589.

Google Scholar

[31] F. Platon, P. Fournier and S. Rouxel: Wear Vol. 250 (2001) pp.227-236.

Google Scholar

[32] V. Saikko et al.: Biomaterials, Vol. 22 (2001) pp.1507-1514.

Google Scholar

[33] M. Kiuru et al.: J. Biomed. Mater. Res. Part B: Appl Biomater, Vol. 66B (2003) pp.425-428.

Google Scholar

[34] J.I. Onate, Surf Coat Technol, Vol. 142-144 (2001) pp.1056-1062.

Google Scholar

[35] R. Lappalainen et al.: J. Biomed. Mater. Res. Part B: Appl. Biomater. Vol. 66B (2003) pp.410-413.

Google Scholar