Porous Alumina/Zirconia Composite Scaffold with Bioactive Glass 58S33C Coating

Article Preview

Abstract:

Strong and tough, macroporous alumina/zirconia composites are superior to alumina scaffolds but still biologically inert to bone tissue, leading to poor tissue ingrowth and osteointegration. One way to solve this problem is applying a bioactive coating onto the pore walls of the macroporous composites. In this study, macroporous alumina/zirconia (20vol%) composites (scaffolds) were prepared by a vacuum infiltration method involving the use of strained (10%) compacts of the expanded polystyrene (EPS) beads (typically 1-2.8 mm in diameter). A bioactive glass (58S33C) coating (~ 20 μm) was applied on the pore walls of the macroporous composites by slurry dip coating and sintering at 1200 oC for 1 hour. A top or outer bioactive glass (58S33C) thin layer (< 10 μm) was further applied by sol dip coating and sintering at a low temperature (< 800 °C). The bioactive glass-coated macroporous alumina/zirconia composites had well interconnected pores, relatively large pore sizes (1-2 mm), medium porosities (60-66%), high compressive strengths (7.52 – 5.42 MPa), and high bioactivity (with an apatite layer formed within 24 hours in the simulated body fluid). The combination of the strong and ultrafine (if not nano-structured) macroporous scaffolds with the multiple or graded bioactive coatings represented a new generation of bone substitutes or permanent scaffolds for bone tissue regeneration.

You might also be interested in these eBooks

Info:

Pages:

87-104

Citation:

Online since:

September 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, R. Stevens, J. Mater. Sci. 24 (1989) pp.2421-2440.

Google Scholar

[2] C. Kaya, E.G. Butler, Scripta Mater 48 (2004) pp.359-364.

Google Scholar

[3] A.S. Matthew, R.H. John, J. Am. Ceram. Soc. 12 (2002) pp.2895-2902.

Google Scholar

[4] M. Ruhle, N. Claussen, A.H. Heuer, J. Am. Ceram. Soc. 69.

Google Scholar

[3] (1986) pp.195-197.

Google Scholar

[5] L. Lefebvre, L. Gremillard, J. Chevalier, R. Zenati, D. Bernache-Assolant, Acta Biomaterialia 4 (2008) p.1894-(1903).

DOI: 10.1016/j.actbio.2008.05.019

Google Scholar

[6] O. Bretcanu, X. Chatzistavrou, K. Paraskevopoulos, R. Conradt, I. Thompson, A.R. Boccaccini, J. Eur. Ceram. Soc. 29.

Google Scholar

[2009] pp.3299-3306.

Google Scholar

[7] J. Zhong, D.C. Greenspan, J. Biomed. Mater. Res. (Appl. Biomater. ) 53 (2000) pp.694-701.

Google Scholar

[8] A. Rámila, M. Vallet-Regí, Biomaterials 22.

Google Scholar

[16] (2001) pp.2301-2306.

Google Scholar

[9] M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo, T. Nakamura, J. Biomed. Mater. Res. 78A (2006) pp.693-701.

DOI: 10.1002/jbm.a.30748

Google Scholar

[10] M. Hamadouche, A. Meunier, D.C. Greenspan, C. Blanchat, J.P. Zhong, G.P.L. Torre, L. Sedel, J. Biomed. Mater. Res. 52 (2000) pp.422-429.

DOI: 10.1002/1097-4636(200011)52:2<422::aid-jbm24>3.0.co;2-p

Google Scholar

[11] P. Torricelli, E. Verne, C.V. Brovarone, P. Appendino, F. Rustichelli, A. Krajewski, A. Ravaglioli, B. Pierini, M. Fini, G. Giavaresi, R. Giardino, Biomaterials 22 (2001) p.2535.

DOI: 10.1016/s0142-9612(00)00444-0

Google Scholar

[12] V. Stanic, N.N. Aldini, M. Fini, G. Giavaresi, R. Giardino, A. Krajewski, A. Ravaglioli, M. Mazzocchi, B. Dubini, M.G. Ponzi Bossi, F. Rustichelli, Biomaterials 23 (2002) pp.3833-3841.

DOI: 10.1016/s0142-9612(02)00119-9

Google Scholar

[13] M.H. Fathi, A. Doostmohammadi, Journal of materials processing technology. 209.

Google Scholar

[3] (2009) pp.1385-1391.

Google Scholar

[14] G. Jiang, D. Shi, Journal of Biomedical Materials Research Part B: Applied Biomaterials 43.

Google Scholar

[1] (1998) pp.77-81.

Google Scholar

[15] S. Bose, J. Darsell, H.L. Hosick, L.H. Yang, D.K. Sarkar, A. Bandyopadhyay, J. Mater. Sci. Mater. Med. 13 (2002) pp.23-28.

Google Scholar

[16] X. Miao, Y. Hu, J. Liu, X. Huang, Materials Science & Engineering C, Biomimetic and Supramolecular Systems 27.

Google Scholar

[2] (2007) pp.257-61.

Google Scholar

[17] X. Miao, International Conference on Frontiers in Materials Science & Technology (FMST2008) 2008 pp.211-14.

Google Scholar

[18] H.S. Costa, A.A.P. Mansur, E.F. Barbosa-Stancioli, M.M. Pereira, H.S. Mansur, Journal of Materials Science 43.

Google Scholar

[2] (2008) pp.510-24.

Google Scholar

[19] T. Takaoka, M. Okumura, H. Ohgushi, K. Inoue, Y. Yakakura, S. Tamai, Biomaterials 17.

Google Scholar

[15] (1996) pp.1499-1505.

Google Scholar

[20] C.C. Camilo, C.A. Fortulan, N.A. Parizotto, B. de M. Purquerio, Key Engineering Materials 396-398 (2009) pp.699-702.

DOI: 10.4028/www.scientific.net/kem.396-398.699

Google Scholar

[21] X. He, Y.Z. Zhang, J.P. Mansell, B. Su, J. Mater. Sci. Mater. Med. 19 (2008) pp.2743-2749.

Google Scholar

[22] J. Liu, X. Miao, Journal of Materials Science 40.

Google Scholar

[23] (2005) pp.6145-50.

Google Scholar

[23] T. Kokubo, H. Takadama, Biomaterials 27.

Google Scholar

[15] (2006) pp.2907-2915.

Google Scholar

[24] L. Radonjić, V. Srdić, Materials Chemistry and Physics 47.

Google Scholar

[1] (1997) pp.78-84.

Google Scholar

[25] F.F. Lange, T. Yamaguchi, B.I. Davis, P.E.D. Morgan, J. Am. Ceram. Soc. 71 (1988) p.446448.

Google Scholar

[26] F.F. Lange, M.M. Hirlinger, J. Am. Ceram. Soc. 67 (1984) pp.164-168.

Google Scholar

[27] E. Jallot, H. Benhayoune, L. Kilian, J.L. Irigaray, Y. Barbotteau, G. Balossier, P. Bonhomme, J. Coll. Inter. Sci. 283.

Google Scholar

[1] (2001) pp.83-90.

Google Scholar

[28] C.T. Wu, Y. Ramaswamy, Y.F. Zhu, R.K. Zheng, R. Appleyard, A. Howard, H. Zreiqat, Biomaterials 30 (2009) pp.2199-2208.

DOI: 10.1016/j.biomaterials.2009.01.029

Google Scholar