Engineering of Skeletal Muscle Tissue Using Myoblast-Seeded Bovine Pericardium for Reconstruction of Abdominal Wall Defect in a Rabbit Model

Article Preview

Abstract:

A novel tissue engineered construct was used to engineer skeletal muscle tissue for reconstruction of abdominal wall defects, which is a common challenge to surgeons, due to insufficient autogenous tissue. Myoblasts were isolated from soleus muscle fibers, seeded onto the scaffold and cultivated in vitro for 5 days. Full-thickness abdominal wall defects (3 x 4 cm) were created in 18 male New Zealand white rabbits and randomly divided into two equal groups (n=9 each). The defects of the first group were repaired with myoblast seeded bovine pericardium (treatment group) whereas the second group involved non-seeded bovine pericardium (control group). Three animals were sacrificed at 7, 14, and 30 days post-implantation from each group and the explanted specimens were subjected to macroscopic, light, fluorescence and electron microscopic analysis. In each case, the tissue engineered construct was thicker from deposition of newly formed collagen with neo-vascularisation, than the control group. Most importantly, multinucleated myotubes and myofibers were only detected in the treatment group. Therefore, this study demonstrates that myoblast-seeded bovine pericardium construct can provide a structural replacement for severe and large abdominal wall defects with profound regeneration of skeletal muscle tissues.

You might also be interested in these eBooks

Info:

Pages:

9-21

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.Y. Lai, P.Y. Chang and J.N. Lin: J. Pediatr. Surg. Vol. 38 (2003), p.1752–55.

Google Scholar

[2] A.B.Z. Zuki, Y.M. Hafeez, M.Y. Loqman, M.M. Noordin and Y. Norimah: Anat. Histol. Embryol. Vol. 36 (2007), p.349–56.

DOI: 10.1111/j.1439-0264.2007.00772.x

Google Scholar

[3] K.P. Amid: Hernia Vol. 1 (1997), p.15–21.

Google Scholar

[4] M. Decurtins and P. Buchman: Res. Exp. Med. Vol. 180 (1982), p.11–14.

Google Scholar

[5] S. Kapan, M. Kapan, E. Goksoy, I. Karabicak and H. Oktar: Hernia Vol. 7 (2003), p.39–43.

DOI: 10.1007/s10029-002-0096-7

Google Scholar

[6] C.Y. Wei, D.C. Chuang, H.C. Chen, C.H. Lin, S.S. Wong, F.C. Wei: Microsurgery Vol. 16 (1995), p.698–703.

Google Scholar

[7] L.G. Griffith and G. Naughton: Science Vol. 295 (2002), p.1009–14.

Google Scholar

[8] J.R. Fuchs, B.A. Nasseri and J.P. Vacanti: Ann. Thorac. Surg. Vol. 72 (2001), p.577– 90.

Google Scholar

[9] E. Rabkin and F.J. Schoen: Cardiovasc. Pathol. Vol. 11 (2002), p.305–17.

Google Scholar

[10] T. Ayele, A.B.Z. Zuki, B.M.A. Noorjahan and M.M. Noordin: J Mater Sci: Mater. Med. (2010), DOI 10. 1007/s10856-010-4007-7.

Google Scholar

[11] M.L. Springer, T. Rando and H.M. Blau, in: Current Protocols in Human Genetics, edited by A.L. Boyle, Unit 13. 4, John Wiley & Sons, New York Publishers (1997).

Google Scholar

[12] G.K. Pavlath, in: Methods in Molecular Medicine: Human Cell Culture Protocols, edited by G.E. Jones, Humana Press, Totowa (1996).

Google Scholar

[13] A.K. Gangwar, A.K. Sharma, N. Kumar, N. Kumar, S.K. Maiti, O.P. Gupta, T.K. Goswami and R. Singh: J. S. Afr. Vet. Ass. Vol. 77 (2006), p.79–85.

DOI: 10.4102/jsava.v77i2.349

Google Scholar

[14] S.D. Jenkins, T.W. Klamer, J.J. Parteka and R.E. Condon: Surgery Vol. 94 (1983), p.392–98.

Google Scholar

[15] W.S. Tung, J. Zainol, A.G. Pilly, N. Yusof and L.M. Yusof: The Science Vol. 2 (2002), p.7–11.

Google Scholar

[16] P.P. Parnigotto, P.G. Gamba, M.T. Conconi and P. Midrio: Urol. Res. Vol. 28 (2000), p.46–51.

Google Scholar

[17] P.P. Parnigotto, M. Marzaro, T. Artusi, G. Perrino and M.T. Conconi: J. Pediatr. Surg. Vol. 35 (2000), p.1304–08.

Google Scholar

[18] D.W. Hutmacher: J. Biomater. Sci. Polym. Ed. Vol. 12 (2001), p.107–24.

Google Scholar

[19] S. Badylak, K. Kokini, B. Tullius, A. Simmons-Byrd and R. Morff: J. Surg. Res. Vol. 103 (2002), p.190–202.

DOI: 10.1006/jsre.2001.6349

Google Scholar

[20] S. Chung, A. Hazen, J.P. Levine, G. Baux, W. A Olivier, H.T. Yee, M.S. Margiotta, N.S. Karp and G.C. Gurtner: Plast. Reconstr. Surg. Vol. 111 (2003), p.225–32.

DOI: 10.1097/00006534-200301000-00039

Google Scholar

[21] I.A. Silver: Equine Vet. J. Vol. 14 (1982), p.7–15.

Google Scholar

[22] D.O. Fauza, J.J. Marler, R. Koka, R.A. Forse, J.E. Mayer and J.P. Vacanti: J. Pediatr. Surg. Vol. 36 2001, p.146–51.

DOI: 10.1053/jpsu.2001.20034

Google Scholar

[23] J. Singh, N. Kumar, A.K. Sharma, S.K. Maiti, T.K. Goswami and A.K. Sharma: Trends. Biomater. Artif. Organs. Vol. 22 (2008), p.34–44.

Google Scholar

[24] P.G. Gamba, M.T. Conconi, R.L. Piccolo, G. Zara, R. Spinazzi and P.P. Parnigotto: J. Pediatr. Surg. Vol. 18 (2002), p.327–31.

Google Scholar

[25] P.B. Van Wachem, L.A. Brouwer and M.J.A. van Luyn: Biomaterials Vol. 20 (1999), p.419–26.

Google Scholar

[26] F.S. Kamelger, R. Marksteiner, E. Margreiter, G. Klima, G. Wechselberger, S. Hering and H. Piza: Biomaterials Vol. 25 (2004), p.1649–55.

DOI: 10.1016/s0142-9612(03)00520-9

Google Scholar

[27] M.T. Conconi, P. D Coppi, S. Bellini, G. Zara, M. Sabatti, M. Marzaro, G. F Zanon, P. G Gamba, P. P Parnigotto and G. G Nussdorfe: Biomaterials Vol. 16 (2005), p.2567–74.

DOI: 10.1016/j.biomaterials.2004.07.035

Google Scholar