Degradable Hydrogels for Tissue Engineering - Part II: Responses of Fibroblasts and Macrophages to Linear PHEMA

Article Preview

Abstract:

A series of linear poly(2-hydroxyethyl methacrylate) (PHEMA) with defined molecular weights (MW) and narrow molecular distributions were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using cumyl dithiobenzoate (CDB) as a chain transfer agent. Murine fibroblasts (3T3) were exposed to eluates from various PHEMA samples, washed or unwashed, and with or without dithioester end groups. After 72 hrs in cell culture, no cytotoxic response was elicited by the polymer samples devoid of dithioester end groups, and which also underwent a thorough washing regime. Specimens throughout the entire MW range were internalized by a macrophage (cell line Raw 264), suggesting that such polymers can be used as models for studying the biodegradation of PHEMA.

You might also be interested in these eBooks

Info:

Pages:

91-104

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. V. Chirila, Y. -C. Chen, B. J. Griffin and I. J. Constable: Polym. Int. Vol. 32 (1993) p.221.

Google Scholar

[2] Y. -C. Chen, T. V. Chirila and A. V. Russo: Mater. Forum Vol. 17 (1993) p.57.

Google Scholar

[3] T. V. Chirila et al.: Biomaterials Vol. 14 (1993) p.26.

Google Scholar

[4] T. V. Chirila, B. Higgins and P. D. Dalton: Cellular Polym. Vol. 17 (1998) p.141.

Google Scholar

[5] Q. Liu et al.: Biomaterials Vol. 21 (2000) p.2163.

Google Scholar

[6] I. Keen et al.: J. Biomimetics Biomater. Tissue Eng., Vol. 6 (2010) p.67.

Google Scholar

[7] S. A. Rosenbluth, G. R. Weddington, W. L. Guess and J Autian: J. Pharm. Sci. Vol. 54 (1965), p.156.

Google Scholar

[8] C. A. Homsy et al.: J. Biomed. Mater. Res. Vol. 3 (1969), p.235.

Google Scholar

[9] C. A. Homsy et al.: J. Macromol. Sci. − Chem. Vol. A4 (1970) p.615.

Google Scholar

[10] E. T. Oppenheimer, M. Willhite, I. Danishefsky and A. P. Stout: Cancer Res. Vol. 21 (1961) p.132.

Google Scholar

[11] M. E. De Bakey et al.: Arch. Surg. Vol. 89 (1964) p.757.

Google Scholar

[12] E. J. Kaminski, R. J. Oglesby, N. K. Wood and J. Sandrik: J. Biomed. Mater. Res. Vol. 2 (1968) p.81.

Google Scholar

[13] J. M. Anderson and K. M. Miller: Biomaterials Vol. 5 (1984) p.5.

Google Scholar

[14] R. V. Robinson, F. M. Sullivan, J. F. Borzelleca and S. L. Schwartz: PVP: A Critical Review of the Kinetics and Toxicology of Polyvinylpyrrolidone (Povidone), Lewis Publishers, Chelsea, MI (1990).

DOI: 10.1201/9780203741672

Google Scholar

[15] R. Duncan et al.: Biochem. J. Vol. 196 (1981) p.49.

Google Scholar

[16] R. Duncan, P. Rejmanová, J. Kopeček and J. B. Lloyd: Biochim. Biophys. Acta Vol. 678 (1981) p.143.

Google Scholar

[17] R. Duncan et al.: Biochim. Biophys. Acta Vol. 799 (1984) p.1.

Google Scholar

[18] L. A. McCormick, L. C. W. Seymour, R. Duncan and J. Kopeček: J. Bioact. Compat. Polym. Vol. 1 (1986) p.901.

Google Scholar

[19] J. G. Shiah et al.: Eur. J. Cancer Vol. 37 (2001) p.131.

Google Scholar

[20] J. Liu et al.: Mol. Pharmaceutics Vol. 6 (2009) p.959.

Google Scholar

[21] J. Liu et al.: J. Controlled Rel. Vol. 143 (2010) p.71.

Google Scholar

[22] J. Chiefari et al.: Macromolecules Vol. 31 (1998) p.5559.

Google Scholar

[23] R. Plummer, Y. -K. Goh, A. K. Whittaker and M. J. Monteiro: Macromolecules Vol. 38 (2005) p.5352.

Google Scholar

[24] L. Zhang et al.: Biomacromolecules Vol. 8 (2007) p.2890.

Google Scholar

[25] M. H. Stenzel, C. Barner-Kowollik, T. P. Davis and H. M. Dalton: Macromol. Biosci. Vol. 4 (2004) p.445.

Google Scholar

[26] M. Nakayama and T. Okano: Biomacromolecules Vol. 6 (2005) p.2320.

Google Scholar

[27] J. Xu et al.: Macromolecules Vol. 39 (2006) p.8616.

Google Scholar

[28] V. Lima et al.: J. Polym. Sci. A: Polym. Chem. Vol. 43 (2005) p.959.

Google Scholar

[29] X. -P. Qiu and F. M. Winnik: Macromolecules Vol. 40 (2007) p.872.

Google Scholar

[30] B. Chong et al.: Aust. J. Chem. Vol. 59 (2006) p.755.

Google Scholar

[31] S. Perrier, P. Takolpuckdee and C. A. Mars: Macromolecules Vol. 38 (2005) p. (2033).

Google Scholar

[32] Y. K. Chong, G. Moad, E. Rizzardo and S. H. Thang: Macromolecules Vol. 40 (2007) p.4446.

Google Scholar

[33] S. Oae, T. Yagihara and T. Okabe: Tetrahedron Vol. 28 (1972) p.3203.

Google Scholar

[34] C. Barner-Kowollik, P. Vana, J. F. Quinn and T. P. Davis: J. Polym. Sci. A: Polym. Chem. Vol. 40 (2002) p.1058.

Google Scholar

[35] C. W. Scales, A. J. Covertine and C. L. McCormick: Biomacromolecules Vol. 7 (2006) p.1389.

Google Scholar

[36] D. Horák, M. Červinka and V. Půža: Biomaterials Vol. 18 (1997) p.1355.

Google Scholar

[37] L. Fornůsek, V. Větvička and J. Kopeček: Experientia Vol. 37 (1981) p.418.

Google Scholar

[38] V. Větvička, L. Fornůsek, J. Kopeček and D. Přikrylová: Folia Biologica Vol. 29 (1983) p.424.

Google Scholar

[39] A. J. Lentz, T. A. Horbett, L. Hsu and B. D. Ratner: J. Biomed. Mater. Res. Vol. 19 (1985) p.1101.

Google Scholar

[40] K. Smetana, Jr. et al.: J. Biomed. Mater. Res. Vol. 24 (1990) p.463.

Google Scholar

[41] K. Smetana, Jr. et al.: Clin. Mater. Vol. 13 (1993) p.47.

Google Scholar

[42] B. W. Ziegelaar et al.: J. Biomater. Sci. Polym. Edn Vol. 9 (1998) p.849.

Google Scholar

[43] G. Mabilleau et al.: Biomaterials Vol. 25 (2004) p.5155.

Google Scholar