[1]
World Business Council for Sustainable Development, Managing End-of-Life Tires, Full Report (2007) 15 pp.
Google Scholar
[2]
C. Clauzade, End-of-life tyres in electric arc furnaces: an industrial success story, ALIAPUR report (2006) 8 pp.
Google Scholar
[3]
V. Sahajwalla, M. Zaharia, A. Anthony, J. Lee, S. Darma, R. Khanna, N. Saha-Chaudhury, D. Knights, P. O'Kane, and E. Pretorius, Combustion of organic waste materials for their utilisation in EAF steelmaking, Proceedings of AISTech Conf., Indianapolis, USA (2007) CD-1.
Google Scholar
[4]
M. Rahman, V. Sahajwalla, R. Khanna, N. Saha-Chaudhury, D. Knights, and P. O'Kane, Fundamental understanding of carbonaceous materials' influence on slag foaming, Proceedings of AISTech Conf., Cleveland, USA (2006) CD-1.
Google Scholar
[5]
J.R. Dankwah, P. Koshy, N.M. Saha-Chaudhury, P. O'Kane, C. Skidmore, D. Knights and V. Sahajwalla, Reduction of FeO in EAF steelmaking slag by metallurgical coke and waste plastics blends, ISIJ Int. 51 (2011) 498-507.
DOI: 10.2355/isijinternational.51.498
Google Scholar
[6]
K. Nishioka, T. Taniguchi, Y. Ueki, K. Ohno, T. Maeda, and M. Shimuzu, Gasification and reduction behaviour of plastics and iron ore mixtures by microwave heating, ISIJ Int. 47 (2007) 602-607.
DOI: 10.2355/isijinternational.47.602
Google Scholar
[7]
T. Murakami and E. Kasai, Reduction mechanism of iron oxide-carbon composite with polyethylene at lower temperature, ISIJ Int. 51 (2011) 9-13.
DOI: 10.2355/isijinternational.51.9
Google Scholar
[8]
A.A. El-Geassy and V. Rajakumar, Gaseous reduction of wustite with H2, CO and H2-CO mixtures, Trans. ISIJ. 25 (1985) 449-458.
DOI: 10.2355/isijinternational1966.25.449
Google Scholar
[9]
H. Ono-Nakazato, T. Yonezawa and T. Usui, Effect of water-gas shift reaction on reduction of iron oxide powder packed bed with H-CO mixtures, ISIJ Int. 43 (2003) 1502-1511.
DOI: 10.2355/isijinternational.43.1502
Google Scholar
[10]
E. Donskoi, D.L.S. McElwain and L.J. Wibberley, Estimation and modelling of parameters for direct reduction in iron ore/coal composites Part II. Kinetic parameters, Metall. Matter. Trans. B 34B (2003) 255-266.
DOI: 10.1007/s11663-003-0012-2
Google Scholar
[11]
J.Y. Shi, E. Donskoi, D.L.S. McElwain and L.J. Wibberley, Modelling novel coal based direct reduction process, Ironmaking Steelmaking 35 (2008) 3-13.
DOI: 10.1179/174328107x174654
Google Scholar
[12]
J. Jones: An International Pig Iron Association Technical Report, 2007..
Google Scholar
[13]
R.J. Fruehan: The rate of carburization of iron in CO-H2 atmospheres: Part I. Effect of Temperature and CO and H2 pressures, Metall. Trans. 4 (1973) 2123-2127.
DOI: 10.1007/bf02643276
Google Scholar
[14]
J.H. Kaspersma and R.H. Shay, A model for carbon transfer in gas-phase carburization of steel, J. Heat Treating 1 (1980) 21-28.
DOI: 10.1007/bf02833252
Google Scholar
[15]
O. Karabelchtchikova, PhD Thesis, Worcester Polytechnic Institute, US, 1997.
Google Scholar
[16]
S. Kongkarat, R. Khanna, P. Koshy, P. O'Kane, and V. Sahajwalla, Use of bakelite as a raw material resource for re-carburisation in steelmaking processes, Steel Research Int. 82 (2011) 1228-1239.
DOI: 10.1002/srin.201100104
Google Scholar
[17]
T. Matsuda, M. Hasegawa, A. Ikemura, K. Wakimoto and M. Iwase, Utilization of waste plastic for the production of metallic iron, hydrogen and carbon monoxide without generating carbon dioxide, ISIJ Int. 48 (2008) 1188-1196.
DOI: 10.2355/isijinternational.48.1188
Google Scholar