[1]
S-H. Lee, Y. Saito, K-T. Park and D.H. Shin, Microstructures and Mechanical Properties of Ultra Low Carbon IF Steel Processed by Accumulative Roll Bonding Process, Mater. Trans. 43 (2002) 2320-2325.
DOI: 10.2320/matertrans.43.2320
Google Scholar
[2]
F. Hayat and H. Uzun, Effect of Heat Treatment on Microstructure, Mechanical Properties and Fracture Behaviour of Ship and Dual Phase Steels, J. Iron Steel Res. Inter. 18 (2011) 65-72.
DOI: 10.1016/s1006-706x(11)60106-4
Google Scholar
[3]
D-S. Zheng, F-X. Zhu, Y-M. Li and B-Z. Chen, (Effect of Cooling Patterns on Microstructure and Mechanical Properties of Hot-Rolled Nb Microalloyed Multiphase Steel Plates), J. Iron Steel Res. Inter. 18 (2011) 46-52.
DOI: 10.1016/s1006-706x(11)60103-9
Google Scholar
[4]
S. Kim, M-H. Hong, K-G. Chin and J-H. Kwak, (Influence of Carbon on Mechanical Properties of Cu Bearing Extra Low Carbon Steel Sheets), Steel Res. Inter. 82 (2011) 734-740.
DOI: 10.1002/srin.201000208
Google Scholar
[5]
M.J. Holzweissig, M.C. Uslu, H.G. Lambers, D. Canadinc and H.J. Maier, (A Comparative Analysis of Austenite-to-Martensite and Austenite-to-Bainite Phase Transformation Kinetics in Steels), Mater. Res. Lett. 1 (2013) 141-147.
DOI: 10.1080/21663831.2013.798748
Google Scholar
[6]
G. Haidemenopoulos and K. Papadimitriou, (Retained Austenite and Mechanical Properties in Bainite Transformed Low Alloy Steels), Steel Res. 66 (1995) 433-438.
DOI: 10.1002/srin.199501150
Google Scholar
[7]
J.W. Simmons, (Mechanical Properties of Isothermally Aged High-Nitrogen Stainless Steel), Metall. Mater. Trans. 26A (1995) 2579-2595.
DOI: 10.1007/bf02669416
Google Scholar
[8]
E. Hornbogen and K-H. Z. Gahr, (Microstructure and Fatigue Crack Growth in a γ-Fe-Ni-Al Alloy), Acta Metall. 24 (1976) 581-592.
DOI: 10.1016/0001-6160(76)90104-8
Google Scholar
[9]
S. Kim and S. Lee, (Effects of Martensite Morphology and Volume Fraction on Quasi-Static and Dynamic Deformation Behavior of Dual-Phase Steels), Metall. Mater. Trans. 31A (2000) 1753-1760.
DOI: 10.1007/s11661-998-0328-2
Google Scholar
[10]
N.C. Goel, S. Sangal and K. Tangri, (A Theoretical Model for the Flow Behavior of Commercial Dual-Phase Steels Containing Metastable Retained Austenite: Part I. Derivation of Flow Curve Equations), Metall. Trans. 16A (1985) 2013-2021.
DOI: 10.1007/bf02662402
Google Scholar
[11]
C. Kim, (Modeling Tensile Deformation of Dual-Phase Steel), Metall. Trans. 19A (1988) 1263-1268.
DOI: 10.1007/bf02662587
Google Scholar
[12]
F.B. Pickering and T. Gladman, (An Investigation into Some Factors which Control the Strength of Carbon Steels), The Iron and Steel Institute Special report no.81, 11pp, 1963.
Google Scholar
[13]
T. Gladman, I.D. McIvor and F.B. Pickering, (Some Aspects of the Structure-Property Relationships in High-Carbon Ferrite-Pearlite Steels), J. Iron Steel Inst. 210 (1972) 916-930.
Google Scholar
[14]
C.C. Anya and T.N. Baker, (Effect of Silicon on Microstructures and Some Mechanical Properties of Low Carbon Steels), Mater. Sci. Tech. 6 (1990) 554-561.
DOI: 10.1179/mst.1990.6.6.554
Google Scholar
[15]
M.J. Sablik and F.J.G. Landgraf, (Modeling Microstructural Effects on Hysteresis Loops with the Same Maximum Flux Density), Magnetics IEEE Trans. 39 (2003) 2528-2530.
DOI: 10.1109/tmag.2003.816466
Google Scholar
[16]
W. Chen, S. Cheng, L. Xue, G.Y. Teng and M.Y. Wu, (Modelling of Flow Stress of Dual Phase Steel under Warm Tensile Deformation), Mater. Sci. Tech. 27 (2011) 1002-1006.
DOI: 10.1179/026708310x12635619988140
Google Scholar
[17]
A. Mukhopadhyay and A. Iqbal, (Prediction of Mechanical Properties of Hot Rolled, Low-Carbon Steel Strips Using Artificial Neural Network), Mater. Manuf. Proc. 20 (2005) 793-812.
DOI: 10.1081/amp-200055140
Google Scholar
[18]
Z. Guo and W. Sha, (Modelling the Correlation between Processing Parameters and Properties of Maraging Steels using Artificial Neural Network), Computational Mater. Sci. 29 (2004) 12-28.
DOI: 10.1016/s0927-0256(03)00092-2
Google Scholar
[19]
J. Zhao, T. Lee, J.H. Lee, Z. Jiang and C.S. Lee, (Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Microalloyed Forging Steels), Metall. Mater. Trans. 44A (2013) 3511-3523.
DOI: 10.1007/s11661-013-1695-x
Google Scholar