[1]
Sakiadis, B.C. (1961) Boundary-layer behavior on continuous solid surface: II. The Boundary-Layer on a continuous flat surface. Journal AIChE, 7, 221-225.
DOI: 10.1002/aic.690070211
Google Scholar
[2]
Crane, L.J., (1970), Flow past a stretching plate. Z. Angew. Math. Phys,. 21, 645–647.
Google Scholar
[3]
Gupta, P. S. and A. S. Gupta, Heat and Mass Transfer on Stretching Sheet With Suction or Blowing, Can. J. Chem. Eng. 55(6), 744–746 (1977).
DOI: 10.1002/cjce.5450550619
Google Scholar
[4]
Carragher, P. and L. J. Crane, Heat Transfer on a Continuous Stretching Sheet, Z. Angew. Math. Mech. (ZAMM)62, 564–565 (1982).
DOI: 10.1002/zamm.19820621009
Google Scholar
[5]
Liu, I. C., Flow and Heat Transfer of an Electrically Conducting Fluid of Second Grade Over a Stretching Sheet Subject to aTransverse Magnetic Field, Int. J. Heat Mass Transfer47, 4427–4437 (2004).
DOI: 10.1016/j.ijheatmasstransfer.2004.03.029
Google Scholar
[6]
Chiam, T. C., Magnetohydrodynamic Heat Transfer Over a Non-Isothermal Stretching Sheet, Acta Mech. 122, 169–179 (1997).
DOI: 10.1007/bf01181997
Google Scholar
[7]
Liu, I. C., Flow and Heat Transfer of an Electrically Conducting Fluid of Second Grade Over a Stretching Sheet Subject to a Transverse Magnetic Field, Int. J. Heat Mass Transfer47, 4427–4437 (2004).
DOI: 10.1016/j.ijheatmasstransfer.2004.03.029
Google Scholar
[8]
Ishak, A., R. Nazar and I. Pop, Heat Transfer Over an Unsteady Stretching Surface with Prescribed Heat Flux, Can. J. Phys. 86, 853–855 (2008a).
DOI: 10.1139/p08-005
Google Scholar
[9]
Ishak, A., N. Nazar and I. Pop, MHD Boundary-Layer Flow Due To a Moving Extensible Surface, J. Eng. Math. 62, 23–33(2008b).
DOI: 10.1007/s10665-007-9169-z
Google Scholar
[10]
Ishak, A., K. Jafar, R. Nazar and I. Pop, MHD Stagnation Point Flow towards a Stretching Sheet, Phys. A388, 3373–3383 (2009).
DOI: 10.1016/j.physa.2009.05.026
Google Scholar
[11]
Prasad, K. V., D. Pal and P. S. Datti, MHD Power-Law Fluid Flow and Heat Transfer Over a Non-Isothermal Stretching Sheet, Commun. Nonlinear Sci. Numer. Simulat. 14, 2178–2189 (2009).
DOI: 10.1016/j.cnsns.2008.06.021
Google Scholar
[12]
Chen, C., On the Analytic Solution of MHD Flow and Heat Transfer for Two Types of Viscoelastic Fluid Over a Stretching Sheet With Energy Dissipation, Internal Heat Source and Thermal Radiation, Int. J. Heat Mass Transfer53, 4262–4273(2010).
DOI: 10.1016/j.ijheatmasstransfer.2010.05.053
Google Scholar
[13]
Abel, M. S., M. M. Nandeppanavar and S. B. Malipatil, Heat Transfer in a Second Grade Fluid Through a Porous Medium From a Permeable Stretching Sheet With Non-Uniform Heat Source/Sink, Int. J. Heat Mass Transfer53, 1788–1795 (2010).
DOI: 10.1016/j.ijheatmasstransfer.2010.01.011
Google Scholar
[14]
Sahoo, B., Flow and Heat Transfer of a Non-Newtonian Fluid Past a Stretching Sheet With Partial Slip, Commun. Nonlinear Sci. Numer. Simulat. 15, 602–615 (2010).
DOI: 10.1016/j.cnsns.2009.04.032
Google Scholar
[15]
Rahman, M. M. and M. Al-Lawatia, Effects of Higher Order Chemical Reaction on Micropolar Fluid Flow on a Power Law Permeable Stretched Sheet With Variable Concentration in a Porous Medium, Can. J. Chem. Eng. 88(1), 23–32 (2010).
DOI: 10.1002/cjce.20244
Google Scholar
[16]
Hsiao, K., MHD Stagnation Point Viscoelastic Fluid Flow and Heat Transfer on a ThermalForming Stretching Sheet With Viscous Dissipation., DOI: 10. 1002/cjce. 20474.
DOI: 10.1002/cjce.20474
Google Scholar
[17]
Stephen U.S. Choi and J. A, Eastman. Enhancing thermal conductivity of fluids with nanoparticles Argonne, #W- 31-109-ENG-38(1995).
Google Scholar
[18]
Puneet Rana and R. Bhargava, Flow and Heat Transfer Analysis of a Nanofluid Along a Vertical Flat Plate with Non-Uniform Heating Using Fem: Effect of Nanoparticle Diameter, vol. 1, no. 3, (2011).
DOI: 10.7763/ijapm.2011.v1.33
Google Scholar
[19]
A. Noghrehabadi, Mehdi Ghalambaz and Mohammad Ghalambaz, A Theoretical Investigation of SiO2- Water Nanofluid Heat Transfer Enhancement over an Isothermal Stretching sheet, vol. 2, No. 9 (2011).
DOI: 10.2514/1.t3866
Google Scholar
[20]
F. Aman, A. Ishak, I. Pop, Mixed Convection Boundary Layer Flow near stagnation point On Vertical surface with slip, 32(12), 1599–1606 (2011).
DOI: 10.1007/s10483-011-1526-x
Google Scholar
[21]
P.K. Kameswaran, M. Narayana, P. Sibanda and P. V. S. N. Murthy, Hydromagnetic Nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and Chemical reaction effects, International Journal of Heat and Mass Transfer, 7587-7595(2012).
DOI: 10.1016/j.ijheatmasstransfer.2012.07.065
Google Scholar
[22]
Masuda et al.
Google Scholar
[23]
H. Masuda,A. Ebata,K. Teramae,N. Hishinuma. Alteration of thermal conductivity and viscosity of fluid by dispersing ultra-fine particles, Netsu Bussei 7(1993) 227-233.
DOI: 10.2963/jjtp.7.227
Google Scholar
[23]
Soundalgekar, V. M., Viscous Dissipation Effect on Unsteady Free Convection Flow Past an Infinite, Vertical Porous Plate with Variable Suction, International Journal of Heat and Mass Transfer.
DOI: 10.1016/0017-9310(74)90041-6
Google Scholar
[24]
Soundalgekar, V. M. and Desai, G. A., Viscous Dissipation Effects on the Unsteady Free Convective Flow of an Elastico-Viscous Fluid Past an Infinite Vertical Plate with Constant Suction, Indian Journal of Pure and Applied Mathematics, 10, pp.1397-1404 (1979).
DOI: 10.1016/0009-2509(71)80042-8
Google Scholar
[25]
Kameswaran, P. K., Narayan, M., Sibanda, P., and Murthy, P. V. S. N., Hydromagnetic Nanofluid Flow Due to a Stretching or Shrinking Sheet with Viscous Dissipation and Chemical Reaction Effects, International Journal of Heat and Mass Transfer, 55, pp.7587-7595 (2012).
DOI: 10.1016/j.ijheatmasstransfer.2012.07.065
Google Scholar
[26]
Javad, and Sina, visvcous flow over nolinealy stretching sheet with effects of viscous dissipation,J. Appl. Math. (2012) 1-10, ID587834.
Google Scholar
[27]
T.G. Motsumi and O.D. Makinde, Effects of thermal and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate. Phys. Scr. 86(2012)045003(8pp).
DOI: 10.1088/0031-8949/86/04/045003
Google Scholar
[28]
M. Habibi matin , M. Dehsara and A. Abbassi, Mixed convection MHD flow of nanofluid over a non-linear stretching sheet with effects of viscous dissipation and variable magnetic field. MECHANIKA, Volume18(4)(2012)415-423.
DOI: 10.5755/j01.mech.18.4.2334
Google Scholar
[29]
K. Bahttacharyya, S. Mukhopadhyay, and G.C. layek . Unsteady MHD boundary layer flow with diffusion and first order chemical over a permeable sheet with suction or blowing. Chemica Engineering Communications, Vol. 200, no. 3. pp.379-397, (2013).
DOI: 10.1080/00986445.2012.712577
Google Scholar
[30]
Yazdi MH, Abdullah S, Hashim I, Sopian K, Slip MHD liquid flow and heat transfer over non-linear permeable stretching surface with chemical reaction. Int J Heat Mass Trans. 54: 3214–3225(2011).
DOI: 10.1016/j.ijheatmasstransfer.2011.04.009
Google Scholar
[31]
Kandasamy R, Hayat T, Obaidatc S (2011a) Group theory transformation for Soret and Dufour effects on free convective heat and mass transfer with thermophoresis and chemical reaction over a porous stretching surface in the presence of heat source/sink. Nucl Eng Des 241: 2155–2161.
DOI: 10.1016/j.nucengdes.2011.03.002
Google Scholar
[32]
Kandasamy R, Loganathanb P, Puvi Arasub P (2011b) Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection. Nucl Eng Des 241: 2053–(2059).
DOI: 10.1016/j.nucengdes.2011.04.011
Google Scholar
[33]
Abdul-Kahar R, Kandasamy R, Muhaimin I (2011) Scaling group transformation for boundary- layer flow of a nanofluid past a porous vertical stretching surface in the presence of chemicalreaction with heat radiation. Comput Fluids 52: 15-21.
DOI: 10.1016/j.compfluid.2011.08.003
Google Scholar
[34]
H.B. Keller, a new difference scheme for parabolic problems: Numerical solutions of partial differential equations, I(Hybbard,B. ed. ), New York: Academic Press, (1971)327-350.
DOI: 10.1016/b978-0-12-358502-8.50014-1
Google Scholar
[35]
Abo-Eldahab EM, Aziz MAE, Blowing/suction effect on hydromagnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption, Intl J. Thermal Sci. 43 (7)(2004)709-719.
DOI: 10.1016/j.ijthermalsci.2004.01.005
Google Scholar
[36]
T. Cebeci, P. Pradshaw, Physical and Computational Aspects of Convective Heat Transfer, New York: Springer, (1988).
Google Scholar
[37]
R Tsai K.H. Huang J.S. Huang, Flow and heat transfer over an unsteady stretching surface with non-uniform heat source. Int. Commun. Heat Mass Transfer, 35(2008)1340-1343.
DOI: 10.1016/j.icheatmasstransfer.2008.07.001
Google Scholar