Unsteady MHD Flow of Heat and Mass Transfer of Nanofluids over Stretching Sheet with a Non-Uniform Heat/Source/Sink Considering Viscous Dissipation and Chemical Reaction

Article Preview

Abstract:

In this paper, unsteady MHD flow of heat and mass transfer of Cu-water and TiO2-water nanofluids over stretching sheet with a non-uniform heat/source/sink considering viscous dissipation and chemical reaction is investigated. The governing partial differential equations with the corresponding boundary conditions are transformed to a system of non-linear ordinary differential equations and solved using Keller box method. The velocity, temperature and concentration profiles are obtained and the influences of various relevant parameters, namely the magnetic parameter M, Prandtl number Pr, Eckert number Ec, Schmidt number Le , chemical reaction parameter K,unsteadiness parameter S and the Soret number Sr on velocity, temperature and concentration profiles are discussed. The skin-friction coefficient–f''(0), heat transfer coefficient –θ'(0) and mass transfer coefficient –φ'(0) are presented in tables. A comparison with published results is also presented and found in good agreement. Keywords: MHD; Keller box method; unsteady; nanofluid; non-uniform heat/source/sink; chemical reaction; viscous dissipation.

You might also be interested in these eBooks

Info:

Pages:

1-12

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sakiadis, B.C. (1961) Boundary-layer behavior on continuous solid surface: II. The Boundary-Layer on a continuous flat surface. Journal AIChE, 7, 221-225.

DOI: 10.1002/aic.690070211

Google Scholar

[2] Crane, L.J., (1970), Flow past a stretching plate. Z. Angew. Math. Phys,. 21, 645–647.

Google Scholar

[3] Gupta, P. S. and A. S. Gupta, Heat and Mass Transfer on Stretching Sheet With Suction or Blowing, Can. J. Chem. Eng. 55(6), 744–746 (1977).

DOI: 10.1002/cjce.5450550619

Google Scholar

[4] Carragher, P. and L. J. Crane, Heat Transfer on a Continuous Stretching Sheet, Z. Angew. Math. Mech. (ZAMM)62, 564–565 (1982).

DOI: 10.1002/zamm.19820621009

Google Scholar

[5] Liu, I. C., Flow and Heat Transfer of an Electrically Conducting Fluid of Second Grade Over a Stretching Sheet Subject to aTransverse Magnetic Field, Int. J. Heat Mass Transfer47, 4427–4437 (2004).

DOI: 10.1016/j.ijheatmasstransfer.2004.03.029

Google Scholar

[6] Chiam, T. C., Magnetohydrodynamic Heat Transfer Over a Non-Isothermal Stretching Sheet, Acta Mech. 122, 169–179 (1997).

DOI: 10.1007/bf01181997

Google Scholar

[7] Liu, I. C., Flow and Heat Transfer of an Electrically Conducting Fluid of Second Grade Over a Stretching Sheet Subject to a Transverse Magnetic Field, Int. J. Heat Mass Transfer47, 4427–4437 (2004).

DOI: 10.1016/j.ijheatmasstransfer.2004.03.029

Google Scholar

[8] Ishak, A., R. Nazar and I. Pop, Heat Transfer Over an Unsteady Stretching Surface with Prescribed Heat Flux, Can. J. Phys. 86, 853–855 (2008a).

DOI: 10.1139/p08-005

Google Scholar

[9] Ishak, A., N. Nazar and I. Pop, MHD Boundary-Layer Flow Due To a Moving Extensible Surface, J. Eng. Math. 62, 23–33(2008b).

DOI: 10.1007/s10665-007-9169-z

Google Scholar

[10] Ishak, A., K. Jafar, R. Nazar and I. Pop, MHD Stagnation Point Flow towards a Stretching Sheet, Phys. A388, 3373–3383 (2009).

DOI: 10.1016/j.physa.2009.05.026

Google Scholar

[11] Prasad, K. V., D. Pal and P. S. Datti, MHD Power-Law Fluid Flow and Heat Transfer Over a Non-Isothermal Stretching Sheet, Commun. Nonlinear Sci. Numer. Simulat. 14, 2178–2189 (2009).

DOI: 10.1016/j.cnsns.2008.06.021

Google Scholar

[12] Chen, C., On the Analytic Solution of MHD Flow and Heat Transfer for Two Types of Viscoelastic Fluid Over a Stretching Sheet With Energy Dissipation, Internal Heat Source and Thermal Radiation, Int. J. Heat Mass Transfer53, 4262–4273(2010).

DOI: 10.1016/j.ijheatmasstransfer.2010.05.053

Google Scholar

[13] Abel, M. S., M. M. Nandeppanavar and S. B. Malipatil, Heat Transfer in a Second Grade Fluid Through a Porous Medium From a Permeable Stretching Sheet With Non-Uniform Heat Source/Sink, Int. J. Heat Mass Transfer53, 1788–1795 (2010).

DOI: 10.1016/j.ijheatmasstransfer.2010.01.011

Google Scholar

[14] Sahoo, B., Flow and Heat Transfer of a Non-Newtonian Fluid Past a Stretching Sheet With Partial Slip, Commun. Nonlinear Sci. Numer. Simulat. 15, 602–615 (2010).

DOI: 10.1016/j.cnsns.2009.04.032

Google Scholar

[15] Rahman, M. M. and M. Al-Lawatia, Effects of Higher Order Chemical Reaction on Micropolar Fluid Flow on a Power Law Permeable Stretched Sheet With Variable Concentration in a Porous Medium, Can. J. Chem. Eng. 88(1), 23–32 (2010).

DOI: 10.1002/cjce.20244

Google Scholar

[16] Hsiao, K., MHD Stagnation Point Viscoelastic Fluid Flow and Heat Transfer on a ThermalForming Stretching Sheet With Viscous Dissipation., DOI: 10. 1002/cjce. 20474.

DOI: 10.1002/cjce.20474

Google Scholar

[17] Stephen U.S. Choi and J. A, Eastman. Enhancing thermal conductivity of fluids with nanoparticles Argonne, #W- 31-109-ENG-38(1995).

Google Scholar

[18] Puneet Rana and R. Bhargava, Flow and Heat Transfer Analysis of a Nanofluid Along a Vertical Flat Plate with Non-Uniform Heating Using Fem: Effect of Nanoparticle Diameter, vol. 1, no. 3, (2011).

DOI: 10.7763/ijapm.2011.v1.33

Google Scholar

[19] A. Noghrehabadi, Mehdi Ghalambaz and Mohammad Ghalambaz, A Theoretical Investigation of SiO2- Water Nanofluid Heat Transfer Enhancement over an Isothermal Stretching sheet, vol. 2, No. 9 (2011).

DOI: 10.2514/1.t3866

Google Scholar

[20] F. Aman, A. Ishak, I. Pop, Mixed Convection Boundary Layer Flow near stagnation point On Vertical surface with slip, 32(12), 1599–1606 (2011).

DOI: 10.1007/s10483-011-1526-x

Google Scholar

[21] P.K. Kameswaran, M. Narayana, P. Sibanda and P. V. S. N. Murthy, Hydromagnetic Nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and Chemical reaction effects, International Journal of Heat and Mass Transfer, 7587-7595(2012).

DOI: 10.1016/j.ijheatmasstransfer.2012.07.065

Google Scholar

[22] Masuda et al.

Google Scholar

[23] H. Masuda,A. Ebata,K. Teramae,N. Hishinuma. Alteration of thermal conductivity and viscosity of fluid by dispersing ultra-fine particles, Netsu Bussei 7(1993) 227-233.

DOI: 10.2963/jjtp.7.227

Google Scholar

[23] Soundalgekar, V. M., Viscous Dissipation Effect on Unsteady Free Convection Flow Past an Infinite, Vertical Porous Plate with Variable Suction, International Journal of Heat and Mass Transfer.

DOI: 10.1016/0017-9310(74)90041-6

Google Scholar

[24] Soundalgekar, V. M. and Desai, G. A., Viscous Dissipation Effects on the Unsteady Free Convective Flow of an Elastico-Viscous Fluid Past an Infinite Vertical Plate with Constant Suction, Indian Journal of Pure and Applied Mathematics, 10, pp.1397-1404 (1979).

DOI: 10.1016/0009-2509(71)80042-8

Google Scholar

[25] Kameswaran, P. K., Narayan, M., Sibanda, P., and Murthy, P. V. S. N., Hydromagnetic Nanofluid Flow Due to a Stretching or Shrinking Sheet with Viscous Dissipation and Chemical Reaction Effects, International Journal of Heat and Mass Transfer, 55, pp.7587-7595 (2012).

DOI: 10.1016/j.ijheatmasstransfer.2012.07.065

Google Scholar

[26] Javad, and Sina, visvcous flow over nolinealy stretching sheet with effects of viscous dissipation,J. Appl. Math. (2012) 1-10, ID587834.

Google Scholar

[27] T.G. Motsumi and O.D. Makinde, Effects of thermal and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate. Phys. Scr. 86(2012)045003(8pp).

DOI: 10.1088/0031-8949/86/04/045003

Google Scholar

[28] M. Habibi matin , M. Dehsara and A. Abbassi, Mixed convection MHD flow of nanofluid over a non-linear stretching sheet with effects of viscous dissipation and variable magnetic field. MECHANIKA, Volume18(4)(2012)415-423.

DOI: 10.5755/j01.mech.18.4.2334

Google Scholar

[29] K. Bahttacharyya, S. Mukhopadhyay, and G.C. layek . Unsteady MHD boundary layer flow with diffusion and first order chemical over a permeable sheet with suction or blowing. Chemica Engineering Communications, Vol. 200, no. 3. pp.379-397, (2013).

DOI: 10.1080/00986445.2012.712577

Google Scholar

[30] Yazdi MH, Abdullah S, Hashim I, Sopian K, Slip MHD liquid flow and heat transfer over non-linear permeable stretching surface with chemical reaction. Int J Heat Mass Trans. 54: 3214–3225(2011).

DOI: 10.1016/j.ijheatmasstransfer.2011.04.009

Google Scholar

[31] Kandasamy R, Hayat T, Obaidatc S (2011a) Group theory transformation for Soret and Dufour effects on free convective heat and mass transfer with thermophoresis and chemical reaction over a porous stretching surface in the presence of heat source/sink. Nucl Eng Des 241: 2155–2161.

DOI: 10.1016/j.nucengdes.2011.03.002

Google Scholar

[32] Kandasamy R, Loganathanb P, Puvi Arasub P (2011b) Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection. Nucl Eng Des 241: 2053–(2059).

DOI: 10.1016/j.nucengdes.2011.04.011

Google Scholar

[33] Abdul-Kahar R, Kandasamy R, Muhaimin I (2011) Scaling group transformation for boundary- layer flow of a nanofluid past a porous vertical stretching surface in the presence of chemicalreaction with heat radiation. Comput Fluids 52: 15-21.

DOI: 10.1016/j.compfluid.2011.08.003

Google Scholar

[34] H.B. Keller, a new difference scheme for parabolic problems: Numerical solutions of partial differential equations, I(Hybbard,B. ed. ), New York: Academic Press, (1971)327-350.

DOI: 10.1016/b978-0-12-358502-8.50014-1

Google Scholar

[35] Abo-Eldahab EM, Aziz MAE, Blowing/suction effect on hydromagnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption, Intl J. Thermal Sci. 43 (7)(2004)709-719.

DOI: 10.1016/j.ijthermalsci.2004.01.005

Google Scholar

[36] T. Cebeci, P. Pradshaw, Physical and Computational Aspects of Convective Heat Transfer, New York: Springer, (1988).

Google Scholar

[37] R Tsai K.H. Huang J.S. Huang, Flow and heat transfer over an unsteady stretching surface with non-uniform heat source. Int. Commun. Heat Mass Transfer, 35(2008)1340-1343.

DOI: 10.1016/j.icheatmasstransfer.2008.07.001

Google Scholar