[1]
Al-Sulaiman, F.A., F. Hamdullahpur, and I. Dincer, Trigeneration: A comprehensive review based on prime movers. International Journal of Energy Research, 2011. 35(3): pp.233-258.
DOI: 10.1002/er.1687
Google Scholar
[2]
Conti, J. and P. Holtberg, International Energy Outlook, U.S.E.I. Administration, Editor. 2011.
Google Scholar
[3]
Gao, L., et al., System study of combined cooling, heating and power system for eco-industrial parks. International Journal of Energy Research, 2008. 32(12): pp.1107-1118.
DOI: 10.1002/er.1448
Google Scholar
[4]
Khatri, K.K., et al., Experimental investigation of CI engine operated Micro-Trigeneration system. Applied Thermal Engineering, 2010. 30(11–12): pp.1505-1509.
DOI: 10.1016/j.applthermaleng.2010.02.013
Google Scholar
[5]
Angrisani, G., et al., Experimental results of a micro-trigeneration installation. Applied Thermal Engineering, 2012. 38(0): pp.78-90.
DOI: 10.1016/j.applthermaleng.2012.01.018
Google Scholar
[6]
Lai, S.M. and C.W. Hui, Integration of trigeneration system and thermal storage under demand uncertainties. Applied Energy, 2010. 87(9): pp.2868-2880.
DOI: 10.1016/j.apenergy.2009.06.029
Google Scholar
[7]
Al-Sulaiman, F.A., I. Dincer, and F. Hamdullahpur, Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production. Journal of Power Sources, 2010. 195(8): pp.2346-2354.
DOI: 10.1016/j.jpowsour.2009.10.075
Google Scholar
[8]
Bell, L.E., Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science, 2008. 321(5895): pp.1457-1461.
DOI: 10.1126/science.1158899
Google Scholar
[9]
Maidment, G., R. Tozer, and J. Missenden, Combined Cooling, Heat and Power (CCHP) in Supermarkets. Applied Thermal Engineering, 2001. 4: pp.277-284.
DOI: 10.1016/s1359-4311(01)00117-x
Google Scholar
[10]
Ma, S., et al., Thermodynamic analysis of a new combined cooling, heat and power system driven by solid oxide fuel cell based on ammonia–water mixture. Journal of Power Sources, 2011. 196(20): pp.8463-8471.
DOI: 10.1016/j.jpowsour.2011.06.008
Google Scholar
[11]
Malico, I., A.P. Carvalhinho, and J. Tenreiro. Design of a trigeneration system using a high-temperature fuel cell. 2009. Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom: John Wiley and Sons Ltd.
DOI: 10.1017/s0001924000086929
Google Scholar
[12]
Ziher, D. and A. Poredos, Economics of a trigeneration system in a hospital. Applied Thermal Engineering, 2006. 26(7): pp.680-687.
DOI: 10.1016/j.applthermaleng.2005.09.007
Google Scholar
[13]
Amid, P., F. Saffaraval, and M. Saffar-avval, Feasibility study of different scenarios of CCHP for a residential complex, in Innovative Technologies for an Efficient and Reliable Electricity Supply (CITRES). 2010. pp.177-183.
DOI: 10.1109/citres.2010.5619818
Google Scholar
[14]
Wu, D.W. and R.Z. Wang, Combined cooling, heating and power: A review. Progress in Energy and Combustion Science, 2006. 32(5–6): pp.459-495.
DOI: 10.1016/j.pecs.2006.02.001
Google Scholar
[15]
Gewald, D., et al., Integrated system approach for increase of engine combined cycle efficiency. Energy Conversion and Management, 2012. 60(0): pp.36-44.
DOI: 10.1016/j.enconman.2011.10.029
Google Scholar
[16]
Wang, E.H., et al., Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy, 2011. 36(5): pp.3406-3418.
DOI: 10.1016/j.energy.2011.03.041
Google Scholar
[17]
Klemeš, J.J. and P.S. Varbanov Heat Integration – History, Recent Developments and Achievements. 2011.
Google Scholar
[18]
Manzela, A.A., et al., Using engine exhaust gas as energy source for an absorption refrigeration system. Applied Energy, 2010. 87(4): pp.1141-1148.
DOI: 10.1016/j.apenergy.2009.07.018
Google Scholar
[19]
Feng, L., et al., Heat Recovery from Internal Combustion Engine with Rankine Cycle, in Power and Energy Engineering Conference (APPEEC). 2010: Asia-Pacific, Chengdu. pp.1-4.
DOI: 10.1109/appeec.2010.5448861
Google Scholar
[20]
Ringler, J., et al., Rankine Cycle for Waste Heat Recovery of IC Engines. SAE International Journal of Engines, 2009. 2(1): pp.67-76.
DOI: 10.4271/2009-01-0174
Google Scholar
[21]
Ogriseck, S., Integration of Kalina cycle in a combined heat and power plant, a case study. Applied Thermal Engineering, 2009. 29(14–15): pp.2843-2848.
DOI: 10.1016/j.applthermaleng.2009.02.006
Google Scholar
[22]
Kavvadias, K.C., A.P. Tosios, and Z.B. Maroulis, Design of a combined heating, cooling and power system: Sizing, operation strategy selection and parametric analysis. Energy Conversion and Management, 2010. 51(4): pp.833-845.
DOI: 10.1016/j.enconman.2009.11.019
Google Scholar
[23]
Lai, S.M. and C.W. Hui, Feasibility and flexibility for a trigeneration system. Energy, 2009. 34(10): pp.1693-1704.
DOI: 10.1016/j.energy.2009.04.024
Google Scholar
[24]
Ekwonu, M.C., The Design of Trigeneration Systems Integrating Gas Engines, in Chemical Engineering and Analytical Sciences. 2012, University of Manchester. pp.1-70.
Google Scholar
[25]
Saleh, B., et al., Working fluids for low-temperature organic Rankine cycles. Energy, 2007. 32(7): pp.1210-1221.
DOI: 10.1016/j.energy.2006.07.001
Google Scholar
[26]
Srinivasan, K.K., P.J. Mago, and S.R. Krishnan, Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an Organic Rankine Cycle. Energy, 2010. 35(6): pp.2387-2399.
DOI: 10.1016/j.energy.2010.02.018
Google Scholar
[27]
Kalina, J., Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC. Applied Thermal Engineering, 2011. 31(14–15): pp.2829-2840.
DOI: 10.1016/j.applthermaleng.2011.05.008
Google Scholar
[28]
Euroheat & Power Guidelines for District Heating Substations. 2008.
Google Scholar
[29]
Sun, D.-W., Comparison of the performances of NH3-H2O, NH3-LiNO3 and NH3-NaSCN absorption refrigeration systems. Energy Conversion and Management, 1998. 39(5–6): pp.357-368.
DOI: 10.1016/s0196-8904(97)00027-7
Google Scholar
[30]
Deng, J., R.Z. Wang, and G.Y. Han, A review of thermally activated cooling technologies for combined cooling, heating and power systems. Progress in Energy and Combustion Science, 2011. 37(2): pp.172-203.
DOI: 10.1016/j.pecs.2010.05.003
Google Scholar