[1]
Schoner, W., Brunner, M. and Mrema, A. (1987). General Introduction to the Structure and Behaviour of Building Materials. Dar es salaam: Faculty of Engineering, University of Dar es salaam.
DOI: 10.18697/ajfand.99.19680
Google Scholar
[2]
Palomo, A., Branco-Varela, M. T., Martinez-Ramirez, S., Puertas, F and Fortes, C. Vol. 47 No. 245. (1997). Historical Mortars, Characterization and Durability, New Tendencies for Research. Journal of Materials and Structure, 29-43.
Google Scholar
[3]
Ngoma, A. M. (2009). Characterisation and Consolidation of Historical Lime Mortars in Cultural Heritage Buildings and Associated Structures in East Africa. Trika-BKN, Bulletin 101.
Google Scholar
[4]
Collepard, M. (1990). Degradation and Restoration of Masonry Walls of Historic Buildings. Journal of Materials and Structure, Volume 23, (134), 81-102.
Google Scholar
[5]
Yates, T. and Ferguson, A. (2008). The Use of Lime-based Mortars in New Build. Urmesham, U.K.: NHBC Foundation.
Google Scholar
[6]
Sanjurjo-Sánchez J., Trindade, M.J., Blanco-Rotea R., Benavides G. R., Fernández M. D., Burbidge C., Prudêncio M.I. and Dias M.I., . (2010).
Google Scholar
[7]
Chever, L. Pavia, R. and Howard, R. (2010). Physical Properties of magnesian Lime Mortars. Materials and Structures, 43, 283-296.
DOI: 10.1617/s11527-009-9488-9
Google Scholar
[8]
Allen, G. C. and Ball, R. J. (2010). Mechanical Properties of Hydraulic Lime Mortars. International Journal of Sustainable Engineering, Vol. 1, No. 101.
Google Scholar
[9]
Ellison, P. T. (1998). Thesis in Historic Conservation. Pennsylvania: University of Pennsylvania Libraries.
Google Scholar
[10]
Swolfs, M. and Goeminne, T. . (2009). Building with Lime – Exchange of Experiences from Academic Producers in the Field. Arte Constructo Molenberglei, 18 / B-2627.
Google Scholar
[11]
Mindess, S. and Darwin, D. . (2003). Concrete (Vol. Second Edition). England: Pearson Education Limited.
Google Scholar
[12]
Groot, C., Ashall, G. and Hughes, J. (2004). Characterization of Old Mortars with Respect to Repai. Italy: RILEM TC 167-COM.
Google Scholar
[13]
Hughes, J. and Callebault, K. . (2004). In-Situ Visual Analysis and Practicle Sampling of Historic Mortars. In J. a. Hughes, Characterization of Old Mortars with Respect to Repair. Italy: RILEM TC 167-COM.
DOI: 10.1617/2912143675.002
Google Scholar
[14]
Middendorf, B, Hughes, J. J, Callebault, K, Baronio, G and Papayianni, I. (2005). Investigative Methods for the Characterization of Historic Mortars. Part 1 . Journal of Materials and Structure, Volume 38, (134)., 771-780.
DOI: 10.1007/bf02479290
Google Scholar
[15]
Schnabel, L. (2009). Mortar Analysis Part 2: Analytical Methods. In Journal of preservation Technology, Vol. XL, No. 2.
Google Scholar
[16]
Schueremans, l., Cizer, O., Janssens, E., Serre, G. and Van Balen, K. (2011).
Google Scholar
[17]
Ersen, A., Gürdal, E., Güleç, A., Yöney, N. Y., Pekmezci, I. P., and Verdön I. ( 2010). An Evaluation of Binders and Aggregates Used in Artificial Stone Architectural Claddings and Elements in Late 19th - Early 20th Centuries. Metu. Jfa, 207-221.
DOI: 10.4305/metu.jfa.2010.2.11
Google Scholar
[18]
Lindqvist, J. E. and Maurenbrecher, P. (2008). RILEM TC 203-RHM: Repair Mortars for Historic Masonry. Testing of Hardened Mortars, A Process of Questioning and Intepreting. Materials and Structures.
DOI: 10.1617/s11527-008-9455-x
Google Scholar
[19]
Moropoulou, A., Bakolas, A. and Bisbikou, K. (1995). Characterisation of Ancient, Byzantine and Later Historic Mortars by Thermal and X-ray Diffraction TechniqueS . Thermochimicaca Acta, p.779 – 795.
DOI: 10.1016/0040-6031(95)02571-5
Google Scholar
[20]
Franzini, F., Leoni, L. and Lezzerini, M. (2000).
Google Scholar
[21]
Al-mukhtar, M. and Beck, K. (2005). Physical-Mechanical Characterization of Hydraulic and Non-Hydraulic Lime Based Mortars For a French Porous Limestone. 45071 Orléans Cedex 2, France: CNRS – CRMD.
Google Scholar
[22]
Livingston, R. (1993). Materials Analysis of the Hagia Sophia Basilica. Structural Repair and Maintenance of Historic Buildings, Computational mechanics Publications, Volume II, pp.15-32.
Google Scholar
[23]
Lindqvist, J.E. and Johansson, S. (2005). Sub-hydraulic Binders in Historic Mortars. International RILEM Workshop on Repair Mortars for Historic Masonry 2005 (pp. p.224 – 230). Italy: RILEM Proceedings Pro 67.
DOI: 10.1007/978-94-007-4635-0_6
Google Scholar
[24]
Wansom, S., Janjaturaphan, S. and Sinthupinyo, S. (2009). Pozzolanic Activity of Rice Husk Ash : Comparison of Various Electrical Methods. Journal of Metals, Materials and Minerals, Vol. 19 No. 2, pp.1-7.
DOI: 10.1016/j.cemconres.2010.08.013
Google Scholar
[25]
Moropoulou, A. B. (2001). The Effects of Limestone Characteristics and Calcinations Temperature to the Reactivity of Quicklime. Cement and Concrete Research, pp.633-639. Additional Readings.
DOI: 10.1016/s0008-8846(00)00490-7
Google Scholar
[1]
Al-mukhtar, M. a. -M. -H. (1898). bbbb. 45071 Orléans Cedex 2, France, . : CNRS – CRMD.
Google Scholar
[2]
Thomson, M, Lindqvist, J. E, Elsen, J. and Groot, C.J.W. P, (2004),. (2004). Porosity of Mortars" in "Characterization of Old Mortars with Respect to Repair,. (pp.75-105). italy: RILEM TC 167-COM.
DOI: 10.1617/14077
Google Scholar
[3]
RILEM 167-COM, K. Van Balen, I. Papayianni, R. P.J. Van Hees, L. Binda. (2005). Characterisation of old mortars with respect to their repair. Materials and Structure, 38, 781-785.
DOI: 10.1007/bf02479291
Google Scholar
[4]
Maurenbrecher, P. (2012). Requirements for Repointing Mortars for Historic Masonry. Repair Mortars for Historic Masonry, RILEM TC 203-RHM (pp.1303-1309). K. U LEUVEN: E &F.N. SPON.
DOI: 10.1617/s11527-012-9849-7
Google Scholar
[5]
Institution, B. S. (1992). BS 882: Specification for Aggregates from Natural Sources for Concrete. London: BSI.
Google Scholar
[6]
Institution, B. S. (1998). BS EN 4551-2: Methods of Testing Mortars, Screeds and Plasters: Part 1. Chemical Analysis and Aggregate Grading, " (Vol. 2). London: BSI.
DOI: 10.3403/01392957
Google Scholar
[7]
Institution, B. S. (1998). BS EN 4551-1: Methods of Testing Mortars, Screeds and Plasters: Part 1. Physical Testing, ",. London: BSI.
DOI: 10.3403/01240942u
Google Scholar
[8]
Institution, B. S. (2000). BS EN 197-1: Cement: Part 1. Composition, Specification and Conformity Criteria for Common Cements. London: BSI.
Google Scholar
[9]
Institution, B. S. (2002). BS EN 1015: Methods of Testing Mortars for Masonry. London: BSI.
Google Scholar
[10]
Institution, B. S. (2010). BS EN 459-1: Building Lime: Part 1. Definition, Specification and Conformity. London: BSI.
Google Scholar
[11]
Groot, C. (2012). RILEM TC 203: Repair Mortars for Historic Masonry: Performance Requirements for Renders and Plasters. Materials and Structures, 45, 1277-1285.
DOI: 10.1617/s11527-012-9916-0
Google Scholar
[12]
Elizabeth, S. G. (2004). Standard Practice for Determining the Components of Historic Cementitious Materials (Vols. Publication No. 2002-20. ). University of Delaware : National Center for Preservation Technology and Training.
Google Scholar
[13]
Binda, L., Papayianni, I. and Toumbakari, E. and van Hees, R. P.J. (2004).
Google Scholar
[14]
Çizer, Ö. (2004). Investigation of Lime Mortar Characteristics for the Conservation of the Ottoman Baths in Seferihisar-Urla Region, . Turkey: İzmir Institute of Technology.
Google Scholar
[15]
Haule, E. (2012). " , ). Evaluating Earthquake Disaster Risk Management in Schools in Rungwe Volcanic Province in Tanzania. Journal of Disaster Risk Studies, Volume 4(1), Article 44.
DOI: 10.4102/jamba.v4i1.44
Google Scholar