[1]
Ahsan Javed, R., Shifan zhu, Chunhuan Guo, Fengchun Jiang 2015. Fundamental concepts and principles for robust structures, subjected to dynamic loading, International Journal of Engineering Research in Africa Vol 13 pp.61-70.
DOI: 10.4028/www.scientific.net/jera.13.61
Google Scholar
[2]
Ahsan Javed, R., Shifan zhu, Chunhuan Guo, Fengchun Jiang 2015. Contact State Investigation of a Three-point Bend Specimen Using Numerical Methods, Key Engineering Materials, Vol. 627, pp.421-424. doi: 10. 4028/www. scientific. net/KEM. 627. 421.
DOI: 10.4028/www.scientific.net/kem.627.421
Google Scholar
[3]
Guo W.G., Li Y.L. and Liu Y.Y. 1997. Analytical and Experimental Determination of Dynamic Impact Stress Intensity Factor for 40 Cr Steel, Theory and Applied Fracture Mechanics 26(1): 29–34. doi: 10. 1016/S0167-8442(96)00031-6.
DOI: 10.1016/s0167-8442(96)00031-6
Google Scholar
[4]
Jiang F. and Vecchio K. S. 2009. Hopkinson Bar Loaded Fracture Experimental Technique: A Critical Review of Dynamic Fracture Toughness Tests, Applied Mechanics Reviews 62(6): 39 pages. doi: 10. 1115/1. 3124647.
DOI: 10.1115/1.3124647
Google Scholar
[5]
Kishimoto K., Aoki S. and Sakata M. 1980. Simple Formula for Dynamic Stress Intensity Factor of Pre-Cracked Charpy Specimen, Engineering Fracture Mechanics 13: 501–508. doi: 10. 1016/0013-7944(80)90081-8.
DOI: 10.1016/0013-7944(80)90081-8
Google Scholar
[6]
Rokach I.V. 2004. Mixed Numerical-Analytical Approach for Dynamic One Test Modeling, International Journal of Fracture 130(4): 193-200. doi: 10. 1007/s10704-004-2590-7.
Google Scholar
[7]
Rokach I.V. 1998. Modal Approach for Processing One and Three-Point Bend Test Data for DSIF–Time Diagram Determination Part I Theory, Fatigue & Fracture of Engineering Materials & Structures 21(8): 1007–1014 doi: 10. 1046/j. 1460-2695. 1998. 00087. x.
DOI: 10.1046/j.1460-2695.1998.00088.x
Google Scholar
[8]
Rokach I. V. 1998. Modal Approach for Processing One and Three-Point Bend Test Data For DSIF-Time Diagram Determination Part II Calculations and Results, Fatigue and Fracture Engineering Materials Structure 21(8): 1015–1026. doi: 10. 1046/j. 1460-2695. 1998. 00088. x.
DOI: 10.1046/j.1460-2695.1998.00088.x
Google Scholar
[9]
Nishioka T. and Atluri S. 1982 A Method for Determining Dynamic Stress Intensity Factors from COD Measurement at The Notch Mouth in Dynamic Tear Testing, Engineering Fracture Mechanics 16(3): 333–339 doi: 10. 1016/0013-7944(82)90112-6.
DOI: 10.1016/0013-7944(82)90112-6
Google Scholar
[10]
Villa I., Loya J.A. and Ferna´ndez-Sa´ez J. 2007. General Expressions for The Stress Intensity Factor of A One-Point Bend Beam, Engineering Fracture Mechanics 74(3): 373–385. doi: 10. 1016/j. engfracmech. 2006. 05. 020.
DOI: 10.1016/j.engfracmech.2006.05.020
Google Scholar
[11]
Rubio L., Fernandez-Sfiez J. and Navarro C. 2003. Determination of Dynamic Fracture-Initiation Toughness Using Three-Point Bending Tests in A Modified Hopkinson Pressure Bar, Experimental Mechanics 43(4): 379-386. doi: 10. 1007/BF02411342.
DOI: 10.1007/bf02411342
Google Scholar
[12]
Bacon C., Farm J. and Lataillade J.L., 1992. Dynamic Fracture Toughness Determined from Load Point Displacement, Experimental Mechanics. 34(3): 217-223 doi: 10. 1007/BF02319758.
DOI: 10.1007/bf02319758
Google Scholar
[13]
Guinea G., Pastor J., Planas J. and Elices M. 1998. Stress Intensity Factor Compliance and CMOD for A General Three-Point Bend Beam, International Journal of Fracture 89(2): 103-116 doi: 10. 1023/A: 1007498132504.
DOI: 10.1023/a:1007498132504
Google Scholar
[14]
Rittel D. 2005. A Hybrid Experimental-Numerical Investigation of Dynamic Shear Fracture, Engineering Fracture Mechanics 72(1): 73–89 doi: 10. 1016/j. engfracmech. 2004. 01. 013.
DOI: 10.1016/j.engfracmech.2004.01.013
Google Scholar
[15]
ASTM (American Society for Testing and Materials). 1983. ASTM E399-93 Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials. Philadelphia, PA Annual Book of ASTM Standards, 03(01).
DOI: 10.1520/stp33670s
Google Scholar