[1]
Chamorro L P, Arndt R E A, Sotiropoulos F. Drag reduction of large wind turbine blades through riblets: Evaluation of riblet geometry and application strategies. Renewable Energy, 2013, 50, pp.1095-1105.
DOI: 10.1016/j.renene.2012.09.001
Google Scholar
[2]
Chen H W, Rao F G, Shang X P, Zhang D Y, Hagiwarab I. Biomimetic drag reduction study on herringbone riblets of bird feather. Journal of Bionic Engineering, 2013, 10(3), pp.341-349.
DOI: 10.1016/s1672-6529(13)60229-2
Google Scholar
[3]
Ke G X, Pan G, Huang Q G, Hu H B, Liu Z Y. Reviews of underwater drag reduction technology. Advances in Mechanics, 2009, 39(5), pp.546-554.
Google Scholar
[4]
Koeltzsch K, Dinkelacker A, Grundmann R. Flow over convergent and divergent wall riblets. Experiments in Fluids, 2002, 33(2), pp.346-350.
DOI: 10.1007/s00348-002-0446-3
Google Scholar
[5]
Srivastava B. Lateral jet control of a supersonic missile: computational and experimental comparisons. Journal of Spacecraft and Rockets, 1998, 35(20), pp.140-146.
DOI: 10.2514/2.3321
Google Scholar
[6]
Yang Y G, Zhang Q H, Liu J. Aerodynamic interaction research of perfect gas lateral jet in hypersonic external flow. Acta Aerodynamica Sinica, 2005, 23(3), pp.299-306.
Google Scholar
[7]
Wu H L, Chen T K, Luo Y S, Gong W Q. Digital particle imaging velocimetre experimental study of the jet to crossflow in a T junction with a sleeve tube. Journal of Xi'an Jiaotong University, 2002, 36(9), pp.886-889.
Google Scholar
[8]
Gruber M R, Goss L P. Surface pressure measurements in supersonic transverse injection flowfields. Journal of Propulsion and Power, 1999, 15(5), pp.633-641.
DOI: 10.2514/2.5487
Google Scholar
[9]
Srivastava B. Asymmetric divert jet performance of a supersonic missile computational and experimental comparisons. Journal of Spacecraft and Rockets, 1999, 36(5), pp.621-632.
DOI: 10.2514/2.3490
Google Scholar
[10]
Sun D C, Hu C B, Cai T M. Computation of supersonic turbulent flowfield with transverse injection. Applied Mathematics and Mechanics, 2002, 23(1), pp.99-105.
Google Scholar
[11]
Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 1996, 126(1), pp.202-228.
DOI: 10.1006/jcph.1996.0130
Google Scholar
[12]
Guan H, Wu C J. Characteristics of vortex structures for large-eddy simulation of turbulent jets in crossflow. Science in China Ser. G Physics, Mechanics & Astronomy, 2006, 36(6), pp.662-677.
DOI: 10.1007/s11433-007-0005-2
Google Scholar
[13]
Gao X D, Wu X S, Wang X M. A numerical study on high-speed spinning and lateral jet flow field. Journal of Ballistics, 2005, 17(2), pp.8-12.
Google Scholar
[14]
Xiao Z Y, Mou Bin, Chen Z B, Liu G. Compressible simulation of active flow control using synthetic jets. Acta Aerodynamica Sinica, 2006, 24(1), pp.46-49.
Google Scholar
[15]
Cai J S, Liu Q H. Numerical investigation of lateral jets in supersonic cross-flows. Acta Aerodynamica Sinica, 2010, 28(5), pp.553-558.
Google Scholar
[16]
Zhang W, Lin Y F, Chen P J. The investigation of active control technology in airfoil flow field based on the synthetic jet. Helicopter Technique, 2010, 1, pp.15-20.
Google Scholar
[17]
Chen J Q, Jiang D W, Zhang Y F. The study on the precision of numerical simulation for lateral jets flow and the experiment validation. Acta Aerodynamica Sinica, 2010, 28(4), pp.421-425.
Google Scholar
[18]
Chen J Q, Zhang Y F, Jiang D W, Mao M L. Numerical simulation of complex flow with multi lateral jets interactions. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6), pp.735-743.
Google Scholar
[19]
Liu J, Yang Y G. Numerical simulation of lateral jet control induced by impulse rocket motor for a supersonic missile. Acta Aerodynamica Sinica, 2005, 23(1), pp.25-28.
Google Scholar
[20]
Liu J, Yang Y G. Numerical simulation of lateral jet control of a hypersonic missile. Acta Aerodynamica Sinica, 2004, 22(3), pp.309-312.
Google Scholar
[21]
Yang Y G, Liu J. Unsteady characteristic research of lateral jet in hypersonic external flow. Acta Aerodynamica Sinica, 2004, 22(3), pp.295-302.
Google Scholar
[22]
Weston P R, Thames F C. Properties of aspect-ratio-4. 0 rectangular jets in a subsonic cross-flow. Journal of Aircraft, 1979, 16(10), pp.701-707.
DOI: 10.2514/3.58592
Google Scholar
[23]
Barber M, Schetz J, Roe L. Normal sonic helium injection thorough a wedge shaped orifice into a supersonic flow. Journal of Propulsion and Power, 1997, 13(2), pp.257-263.
DOI: 10.2514/2.5157
Google Scholar
[24]
Cortelezzi L, Karagozian A R. On the formation of the counter-rotating vortex pair in transverse jets. Journal of Fluid Mechanics, 2001, 446, pp.347-373.
DOI: 10.1017/s0022112001005894
Google Scholar
[25]
Kelso R M, Lim T T, Perry A E. An experimental study of round jets in cross-flow. Journal of Fluid Mechanics, 1996, 306, pp.111-144.
DOI: 10.1017/s0022112096001255
Google Scholar
[26]
Yuan L L, Street R L, Ferziger J H. Large-eddy simulations of a round jet in crossflow. Journal of Fluid Mechanics, 1999, 379, pp.71-104.
DOI: 10.1017/s0022112098003346
Google Scholar
[27]
Rivero A, Ferré J A, Giralt F. Organized motions in a jet in crossflow. Journal of Fluid Mechanics, 2001, 444, pp.117-149.
DOI: 10.1017/s0022112001005407
Google Scholar
[28]
Lim T T, New T H, Luo S C. On the development of large-scale structures of a jet normal to a cross flow. Physics of Fluids, 2001, 13(3), pp.770-775.
DOI: 10.1063/1.1347960
Google Scholar
[29]
Graham M J, Weinacht P. Numerical investigation of supersonic jet interaction for axisymmetric bodies. Journal of Spacecraft and Rockets, 2000, 37(5), pp.675-683.
DOI: 10.2514/2.3617
Google Scholar
[30]
Mahmud Z, Bowersox R D W. Aerodynamics of low-blowing-ratio fuselage injection into a supersonic freestream. Journal of Spacecraft and Rockets, 2005, 42(1), pp.30-37.
DOI: 10.2514/1.4803
Google Scholar
[31]
Min B Y, Lee J W, Byun Y H. Numerical investigation of the shock interaction effect on the lateral jet controlled missile. Aerospace Science and Technology, 2006, 10(5), pp.385-393.
DOI: 10.1016/j.ast.2005.11.013
Google Scholar
[32]
Meyer B, Nelson H F, Riggins D. Hypersonic drag and heat-transfer reduction using a forward-facing jet. Journal of Aircraft, 2001, 38(4), pp.680-684.
DOI: 10.2514/2.2819
Google Scholar
[33]
Geng X R, Gui Y W, Wang A L, He L X. Numerical investigation on drag and heat-transfer reduction using 2-D planar and axisymmetrical forward facing jet. Acta Aerodynamica Sinica, 2006, 24(1), pp.85-89.
Google Scholar
[34]
Geng X R, Gui Y W, He L X, Wang A L. Investigation on hypersonic heat-transfer reduction using an upstream-directed jet. Proceedings of the 3rd International Symposium on Heat Transfer and Energy Conservation, Guangzhou, 2004, 1, pp.18-21.
Google Scholar
[35]
Shi Q, Li H. Numerical simulation about the effects of flow control for increasing lift and decreasing drag. Acta Aerodynamica Sinica, 2011, 29(3), pp.280-287.
Google Scholar
[36]
Endwell O D, Victor E P, Wang Ten-see, Ota D K, Blankson I M, Auslender A H. Dynamics of shock dispersion and interactions in supersonic freestreams with counterflowing jets. AIAA Journal, 2009, 47(6), pp.1313-1326.
DOI: 10.2514/1.30084
Google Scholar
[37]
Ganiev Y C, Gardeev V P, Krasilinikov A V, Lagutin V I, Otmennikov V N, Panasenko A V. Aerodynamic drag reduction by plasma and hot-gas injection. Journal of Thermophysics and Heat Transfer, 2000, 14(1), pp.10-17.
DOI: 10.2514/2.6504
Google Scholar
[38]
Shang J S, Haes J, Menart J. Hypersonic flow over a blunt body with plasma injection. Journal of spacecraft and rocket, 2002, 39(3), pp.367-375.
DOI: 10.2514/2.3835
Google Scholar
[39]
Venukumar B, Jagadeesh G, Reddy K P J. Counterflow drag reduction by supersonic jet for a blunt body in hypersonic flow. Physics of Fluids, 2006, 18(11), pp.118104-4.
DOI: 10.1063/1.2401623
Google Scholar
[40]
Fomin V M, Maslov A A, Malmuth N D, Fomichev V P, Shashkin A P, Korotaeva T A, Shiplyuk A N, Pozdnyakov G A. Influence of a counterflow plasma jet on supersonic blunt-body pressures. AIAA Journal, 2002, 40(6), pp.1170-1177.
DOI: 10.2514/3.15178
Google Scholar
[41]
Chen L W, Wang G L, Lu X Y. Numerical investigation of a jet from a blunt body opposing a supersonic flow. Journal of Fluid Mechanics, 2011, 684, pp.85-110.
DOI: 10.1017/jfm.2011.276
Google Scholar
[42]
Zhou C Y, Ji W Y, Zhang X W, Deng L J. Numerical investigation on counter-flow jet drag reduction of a bluff body in supersonic flow. Chinese Journal of Applied Mechanics, 2012, 29(2), pp.159-163.
Google Scholar
[43]
He K F, Dong W Z, Chen J Q, Deng X G. Numerical studies of flowfields around the supersonic blunt body with the jet of the mixture of air and kalium. Acta Aerodynamica Sinica, 2006, 24(1), pp.90-94.
Google Scholar
[44]
Wang X, Pei X, Chen Z M, Xu M. Supersonic with counter-flowing jets on drag and heat-transfer reduction. Journal of Propulsion Technology, 2010, 31(3), pp.261-264.
Google Scholar
[45]
He K, Chen J Q, Dong W Z. Penetration mode and drag reduction research in hypersonic flows using a counter-flow jet. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4), pp.438-445.
Google Scholar
[46]
Yang Y, Liu X Q, Asif S. Transonic drag reduction on supercritical wing section using shock control bumps. Transactions of Nanjing University of Aeronautics & Astronautics, 2012, 29(3), pp.207-214.
Google Scholar
[47]
Eswar J, Mark P, William B B. Applications of a counterflow drag reduction technique in high-speed systems. Journal of Spacecraft and Rockets, 2002, 39(4), pp.605-614.
DOI: 10.2514/2.3850
Google Scholar
[48]
Bushnell D M. Shock wave drag reduction. Annual Review Fluid Mechanics, 2004, 36(1), pp.81-96.
DOI: 10.1146/annurev.fluid.36.050802.122110
Google Scholar
[49]
Jiang Z L, Liu Y F, Han G L, Zhao W. Experimental demonstration of a new concept of darg reduction and thermal protection of hypersonic vehicles. Acta Mechanic Sinica, 2009, 25(3), pp.417-419.
DOI: 10.1007/s10409-009-0252-8
Google Scholar
[50]
Yonezawa M, Yamashita H, Obayashi S. Investigation of supersonic wing shape using Busemann biplane airfoil. Collection of Technical Papers-45th AIAA Aerospace Sciences Meeting, Reno, NV, US: American Institute of Aeronautics and Astronautics Inc., 2007, 12, pp.8482-8492.
DOI: 10.2514/6.2007-686
Google Scholar
[51]
Kusunose K. A fundamental study for the development of boomless supersonic transport aircraft. Collection of Technical Papers-44th AIAA Aerospace Sciences Meeting, Reno, NV, US: American Institute of Aeronautics and Astronautics Inc., 2006, 11, pp.7785-7807.
DOI: 10.2514/6.2006-654
Google Scholar
[52]
Maruyama D, Matsuzawa T. Consideration at off-design conditions of supersonic flows around biplane airfoils. Collection of Technical Papers-45th AIAA Aerospace Sciences Meeting, Reno, NV, US: American Institute of Aeronautics and Astronautics Inc., 2007, 12, pp.8493-8513.
DOI: 10.2514/6.2007-687
Google Scholar
[53]
Hua R H, Ye Z Y. Drag reduction method for supersonic missile based on Busemann biplane concept. Chinese Journal of Applied Mechanics, 2012, 29(5), pp.535-540.
Google Scholar
[54]
Fu Q. The slender body theory and its application on decreasing the drag in transonic flow. Engineering Mechanics, 1999, 16(3), pp.64-69.
Google Scholar
[55]
Tian T, Yan C. Numerical simulation on opposing jet in hypersonic flow. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(1), pp.9-12.
Google Scholar
[56]
Wang J F, Wu Y Z. Numerical simulation for hypersonic flow on unstructured grid and analysis of drag induction effects on channel-configuration. Journal of Nanjing University of Aeronautics & Astronautics, 2004, 36(6), pp.671-676.
Google Scholar
[57]
Miles R B, Macheret S O, Shneider M N, Steeves C, Murray R C, Smith T, Zaidi S H. Plasma-enhanced hypersonic performance enabled by MHD power extraction. 43rd AIAA Aerospace Sciences Meeting and Exhibit-Meeting Papers, Reno, NV, US: American Institute of Aeronautics and Astronautics Inc., 2005, pp.13175-13190.
DOI: 10.2514/6.2005-561
Google Scholar
[58]
Menart J, Shang J, Atzbach C, Magoteaux S, Slagel M, Bilheimer B. Total drag and lift measurements in a Mach 5 flow affected by a plasma discharge and a magnetic field. 43rd AIAA Aerospace Sciences Meeting and Exhibit-Meeting Papers, Reno, NV, US: American Institute of Aeronautics and Astronautics Inc., 2005, pp.15903-15918.
DOI: 10.2514/6.2005-947
Google Scholar
[59]
Geng Y F, Yan C. Numerical investigation of self-aligning spiked bodies at hypersonic speeds. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3), pp.441-446.
Google Scholar
[60]
Riggings D, Johnson E, Nelson H F. Blunt body wave drag reduction using focused energy deposition. AIAA Journal, 1999, 37(4), pp.460-467.
DOI: 10.2514/3.14192
Google Scholar
[61]
Georgievsky P Y, Levin V A. Effective flow-over-body control by energy input upstream. 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, US: American Institute of Aeronautics and Astronautics Inc., 2003, pp.2003-38.
DOI: 10.2514/6.2003-38
Google Scholar
[62]
Satheeshl K, Jagadeesh G. Experimental investigations on the effect of energy deposition in hypersonic blunt body flow field. Shock waves, 2008, 18(1), pp.53-70.
DOI: 10.1007/s00193-008-0140-3
Google Scholar
[63]
Mehta R C. Numerical heat transfer study over spiked blunt bodies at Mach 6. 80. Journal of Spacecraft and Rockets, 2000, 37(5), pp.700-703.
DOI: 10.2514/2.3622
Google Scholar
[64]
Yan C, Gao R, Li J. A new method for estimating the first normal grid spacing in heat flux computations. 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, US: American Institute of Aeronautics and Astronautics Inc., 2009, pp.2009-832.
DOI: 10.2514/6.2009-832
Google Scholar
[65]
Kobayashi H, Maru Y, Fukiba K. Experiment study on aerodynamic characteristics of telescopic aerospikes with multiple disks. Journal of spacecraft and Rockets, 2007, 44(1), pp.33-41.
DOI: 10.2514/1.25250
Google Scholar
[66]
Geng Y F, Yan C. Numerical investigation on drag and heat-transfer reduction using combined spike and forward facing jet method. Acta Aerodynamica Sinica, 2010, 28(4), pp.436-440.
Google Scholar
[67]
Srulijes J, Gnemmi P, Seiler F, Runne K. Shock tunnel high speed photography and CFD calculations on spike-tipped bodies. 25th International Congress on High-Speed Photography and Photonics, Beaune, France: SPIE, 2002, 4948, pp.658-670.
DOI: 10.1117/12.516788
Google Scholar
[68]
Gnemmi P, Srulijes J, Roussel K, Runne K. Flowfield around spike-tipped bodies for high attack angles at Mach 4. 5. Journal of spacecraft and Rockets, 2003, 40(5), pp.622-631.
DOI: 10.2514/2.6910
Google Scholar
[69]
Schülein E. Wave drag reduction approach for blunt bodies at high angles of attack: proof-of-concept experiments. 4th AIAA Flow Control Conference, Seattle, WA, US: American Institute of Aeronautics and Astronautics Inc., 2008, pp.2008-4000.
DOI: 10.2514/6.2008-4000
Google Scholar
[70]
Bletzinger P, Ganguly B N, Wie D V, Garscadden A. Plasmas in high speed aerodynamics. Journal of Physics D: Applied Physics, 2005, 38(4), pp.33-57.
DOI: 10.1088/0022-3727/38/4/r01
Google Scholar
[71]
Sun Z X. Progress in plasma assisted drag reduction technology. Advances in Mechanics, 2003, 33(1), pp.87-94.
Google Scholar
[72]
Hartley C S, Portwood T W, Filippelli M V, Myrabo L N, Nagamatsu H T, Shneider M N, Razier Y P. Experimental and computational investigation of drag reduction by electric-arc airspikes at Mach 10. Proceeding of 3rd International Symposium on Beamed Energy Propulsion, New York, 2005, pp.499-513.
DOI: 10.2514/6.2004-35
Google Scholar
[73]
Misiewicz C, Myrabo L N, Shneider M N. Combined experimental and numerical investigation of electric-arc airspikes for blunt body at Mach 3. Proceeding of 3rd International Symposium on Beamed Energy Propulsion, New York, 2005, pp.528-541.
DOI: 10.1063/1.1925172
Google Scholar
[74]
Luo J L, Xu M, Dai W Y, Liu Z. Numerical simulation investigation on plasma injection for drag reduction of hypersonic vehicle. Journal of Astronautics, 2009, 30(1), pp.119-122.
Google Scholar
[75]
Mao M L, Dong W Z, Deng X G, Chen J Q. Numerical simulation study of the interaction between a high-powered laser and the hypersonic flowfield about a spherecone. Acta Aerodynamica Sinica, 2001, 19(2), pp.172-176.
Google Scholar
[76]
Li Q, Jin X, Cao Z R, Huang H. Effects on aerodynamic drag of incident laser energy in technology of laser plasma point source drag reduction. Journal of Propulsion Technology, 2010, 31(3), pp.377-380.
Google Scholar
[77]
Ganiev Y C, Gordeev V P, Krasilnikov A V, Lagutin V I, Otmennikov V N, Panasenko A V. Theoretical and experimental study of the possibility of reducing aerodynamic drag by employing plasma injection. 37th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, US: American Institute of Aeronautics and Astronautics Inc., 1999, pp.1999-0603.
DOI: 10.2514/6.1999-603
Google Scholar