Experimental Verification of Force Feedback for Rehabilitation Robot

Article Preview

Abstract:

Unlike conventional robots, the equipment provided with pneumatic artificial muscles cannot integrate standard systems for force measurement. Applied measurement system involves specific attributes and requirements for pneumatic muscles. Force feedback of rehabilitation device equipped with pneumatic muscles was experimentally verified under the laboratory condition.

You might also be interested in these eBooks

Info:

Pages:

123-129

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. More, O. Líška, Design of active feedback for rehabilitation robot, Applied Mechanics and Materials 611 (2014) 529-535.

DOI: 10.4028/www.scientific.net/amm.611.529

Google Scholar

[2] A. Hošovský, K. Židek, Experimental validation of nominal model characteristics for pneumatic muscle actuator, Applied Mechanics and Materials 460 (2014) 1-12.

DOI: 10.4028/www.scientific.net/amm.460.1

Google Scholar

[3] B. Jobbágy, J. Karchňák, D. Šimšík, Rehabilitation robotics and wearable sensors as trends of home rehabilitation, in: Proc. of 15th Int. Carpathian Control Conf. ICCC 2014, Velke Karlovice, IEEE, 2014, pp.219-222.

DOI: 10.1109/carpathiancc.2014.6843600

Google Scholar

[4] A. Hošovský: The control if the PAM-based position servosystem with acceleration loop, Journal of applied science in the thermodynamics and fluid mechanics 2/1 (2008).

Google Scholar

[5] J. Piteľ, M. Balara, J. Boržíková, Control of the Actuator with Pneumatic Artificial Muscles in Antagonistic Connection, Transactions of VŠB – Technická univerzita Ostrava 53/2 (2007) 101-106.

Google Scholar

[6] D. Šimšík et al., Design of inertial module for rehabilitation device, in: Proc. of 11th Int. Symp. on Applied Machine Intelligence and Informatics - SAMI 2013, Herľany, Slovakia, IEEE, 2013, pp.33-36.

DOI: 10.1109/sami.2013.6480991

Google Scholar

[7] J. Piteľ, Modelling of the PAM Based Antagonistic Actuator, information on www. cybletter. com/index. php?s=file_download&id=56.

Google Scholar

[8] A. Hošovský et al., Model-based Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator, International Journal of Advanced Robotic Systems 9 (2012) 1-11.

DOI: 10.5772/50347

Google Scholar

[9] O. Líška, M. More, D. Janáčová, H. Charvátová, Design of Rehabilitation Robot Based on Pneumatic Artificial Muscles, in: Proc. of 1st Int. Conf. on Optimization Techniques in Engineering (OTENG '13), WSEAS Press, Istanbul, 2013, pp.151-154.

Google Scholar

[10] A. Hošovský, M. Havran, Dynamic Modeling of One Degree of Freedom Pneumatic Muscle-Based Actuator for Industrial Applications, Tehnički Vjesnik 3/19 (2012) 673-681.

Google Scholar

[11] K. Židek, O. Líška, V. Maxim, Rehabilitation Device Based on Unconventional Actuator. Mechatronics: Recent Technological and Scientific Advances, Springer, Berlin, 2011, pp.697-702.

DOI: 10.1007/978-3-642-23244-2_84

Google Scholar

[12] J. Mižáková, J. Piteľ and M. Tóthová, Pneumatic Artificial Muscle as Actuator in Mechatronic System, Applied Mechanics and Materials 460 (2014) 81-90.

DOI: 10.4028/www.scientific.net/amm.460.81

Google Scholar

[13] J.M. Hopen, A. Hošovský, The Servo Robustification of the Industrial Robot, Annals of DAAAM 2005, DAAAM International, Vienna, 2005, pp.161-162.

Google Scholar

[14] M. Tóthová, Modeling and Simulation of Dynamics of Nonconventional Pneumatic Actuator of Manipulator - Dissertation Work, TUKE, Prešov, (2014).

Google Scholar

[15] M. Tóthová, Simulation Model of Pneumatic Actuator Based on Artificial Muscles, in: Proc. of Conference IMAP 2013, TUKE, Prešov, 2013, pp.65-69.

Google Scholar

[16] M. Tóthová, Simulation of Pneumatic Muscle Actuator Dynamics, in: Proc of 1st Biannual Comparative European Research Conference (CER 2014), London, 2014, pp.109-112.

Google Scholar

[17] M. Tóthová, A. Hošovský, Dynamic Simulation Model of Pneumatic Actuator with Artificial Muscle, in: Proc. of 11th IEEE International Symposium on Applied Machine Intelligence and Informatics (SAMI 2013), IEEE, Budapest, 2013, pp.47-51.

DOI: 10.1109/sami.2013.6480994

Google Scholar

[18] M. Tóthová, Simulation of the Pneumatic Actuator with Artificial Muscles Using Modified Hill´s Muscle Model, in: Proc. of Automation in Theory and Practice (ARTEP 2013), TUKE, Košice, 2013, 41/1-41/8.

Google Scholar

[19] M. Tóthová, Simulation of the Pneumatic Actuator Dynamics Using Advanced Geometric Model of Artificial Muscle, in: Proc. of Automation in Theory and Practice (ARTEP 2014), TUKE, Košice, 2014, 22/1-22/8.

Google Scholar

[20] I. Mack et al., Interactive Force Sensing Feedback System for Remote Robotic Laparoscopic Surgery, in: Haptic Audio visual Environments and Games, 2009, information on: http: /ieeexplore. ieee. org/stamp/stamp. jsp?tp=&arnumber=5356129.

DOI: 10.1109/have.2009.5356129

Google Scholar

[21] T. Kelemenová et al., Model based design and HIL simulations, American Journal of Mechanical Engineering 1 (2013) 276-280.

Google Scholar

[22] A. Erwin et al., Interaction Control For Rehabilitation Robotics via a Low-Cost Force Sensing Handle, in: Proc. of the Dynamic Systems and Control Conference DSCC 2013, information on: http: /mahilab. rice. edu/sites/mahilab. rice. edu/files/publications/DSCC2013-4073. pdf.

Google Scholar

[23] A. Hošovský, K. Židek, Experimental Validation of Nominal Model Characteristics for Pneumatic Muscle Actuator, Applied Mechanics and Materials 460 (2014) 1-12.

DOI: 10.4028/www.scientific.net/amm.460.1

Google Scholar

[24] M. Tóthová, S. Hrehová, Dynamic Characteristics of the Antagonistic Pneumatic Muscle Actuator for Biomechanical Applications, in: Proc. of 2nd Int. Conf. on Sensors and Materials Manufacturing Science (ICSMMS 2015), BOSI EDU, Paris, (2015).

Google Scholar

[25] A. Hošovský, P. Michal, M. Tóthová, O. Biroš, Fuzzy Adaptive Control for Pneumatic Muscle Actuator with Simulated Annealing Tuning, in: Proc. of 12th IEEE Int. Symp. on Applied Machine Intelligence and Informatics (SAMI 2014), IEEE, Budapest, 2014, pp.205-209.

DOI: 10.1109/sami.2014.6822408

Google Scholar

[26] J. Boržíková, M. Balara, Mathematical Model of Contraction Characteristics of the Artificial Muscle, Manufacturing Engineering 6/2 (2007) 26-29.

Google Scholar

[27] M. Balara, M. Tóthová, Static and Dynamic Properties of the Pneumatic Actuator with Artificial Muscles, in: Proc. of IEEE 10th Jubilee Int. Symp. on Intelligent Systems and Informatics (SISY 2012), IEEE, Subotica, 2012, pp.577-581.

DOI: 10.1109/sisy.2012.6339483

Google Scholar

[28] K. Židek, A. Hošovský: Wireless Device Based on MEMS Sensors and Bluetooth Low Energy (LESmart) Technology for Diagnostics of Mechatronic Systems, Applied Mechanics and Materials 460 (2014) 13-21.

DOI: 10.4028/www.scientific.net/amm.460.13

Google Scholar

[29] P. Berkelman et al., A Miniature Microsurgical Instrument Tip Force Sensor for Enhanced Force Feedback During Robot-Assisted Manipulation, in: IEEE Transactions On Robotics And Automation, 2003, information on: http: /www. cs. jhu. edu/~rht/RHT%20Papers/2003/Miniature. pdf.

DOI: 10.1109/tra.2003.817526

Google Scholar

[30] A. Erwin et al., Interaction Control For Rehabilitation Robotics via a Low-Cost Force Sensing Handle, in: Proc. of the Dynamic Systems and Control Conference DSCC 2013, information on: http: /mahilab. rice. edu/sites/mahilab. rice. edu/files/publications/DSCC2013-4073. pdf.

Google Scholar

[31] F. Trebuňa, P. Sivák, Experimental methods of thermomechanics: Tensometry (Experimentálne metódy mechaniky: Tenzometria), TUKE, Košice, 2012 (in Slovak).

Google Scholar