[1]
J. Piteľ, Analysis of the Heating System from the Perspective of Control, Acta Mechanica Slovaca 2 (2002) 93-98.
Google Scholar
[2]
J. Piteľ, J. Šeminský, Analysis of the Innovation Possibilities of Heat Supply Control Systems Based on Outdoor Temperature Compensation, Transfer inovácií 18 (2010) 38-41.
Google Scholar
[3]
Ľ. Straka, I. Čorný, J. Boržíková, Analysis of Heat-Affected Zone Depth of Sample Surface at Electrical Discharge Machining with Brass Wire Electrode, Strojárstvo: Journal for Theory and Application in Mechanical Engineering 51/6 (2009) 633-64.
Google Scholar
[4]
J. Mižák, J. Piteľ, The Control Systems of Heat Supply - Trends, Technical Solutions. Vykurovanie 2011, Bratislava: SSTP (2011) 427-431.
Google Scholar
[5]
J. Piteľ, Simulation of Automatic Control of Heating, Vykurovanie (2008) 353-356.
Google Scholar
[6]
I. Lukáčová, J. Boržíková, Comparison of Advanced Control Methods with Classical PID Control for Using in Heating Process Control Based on Outdoor Temperature Compensation, Journal of Applied Science in the Thermodynamics and Fluid Mechanics 4/2 (2010).
Google Scholar
[7]
A. Hošovský, J. Novák-Marcinčin, J. Piteľ, J. Boržíková, K. Židek, Model-Based Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator, International Journal of Advanced Robotic Systems 9/56 (2012) 1-11.
DOI: 10.5772/50347
Google Scholar
[8]
I. Lukáčová, J. Šeminský, Comparison of Modern Control Methods with Classical PID Controller for Heating Control, Principia Cybernetica (2010) 49-54.
Google Scholar
[9]
R. Kreheľ, Ľ. Straka, T. Krenický, Diagnostics of Production Systems Operation Based on Thermal Processes Evaluation, Applied Mechanics and Materials 308 (2013) 121-126.
DOI: 10.4028/www.scientific.net/amm.308.121
Google Scholar
[10]
M. Fedák, P. Semančo, M. Mičko, Statistical Process Control Method Based on Weight Percent of Al-Si Alloy for Melting and Holding Process in Die Casting; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 62 (2012).
DOI: 10.1007/978-3-642-32573-1_30
Google Scholar
[11]
M. Balara, J.M. Hopen, The Automatic Thermal Control System with Temperature Derivation Feedback, Manufacturing Engineering 1/1 (2002) 22-25.
Google Scholar
[12]
Ch. Ebert, A. Schaub, Entwurf und Vergleich von Fuzzy-Regeln am Beispiel einer Heizungsanlage, Automatisierungstechnik 41/5 (1993) 173-179 (in German).
DOI: 10.1515/auto-1993-0512
Google Scholar
[13]
J. Piteľ, The Mathematical Model of Heat Transfer Wall to Simulate the Heating Process Control, Acta Metallurgica Slovaca 13/3 (2007) 296-300.
Google Scholar
[14]
J. Boržíková, A. Hošovský, J. Piteľ, Modeling of Heat Transfer Through the Wall for Simulation of Heating Process Control, in: Proc. of 9th Int. Sci. -Tech. Conf., DGTU, Rostov, 2010, pp.298-301.
Google Scholar
[15]
J. Boržíková, S. Hrehová, A. Hošovský, Simulation Model of Heat Transfer through the Wall, in: Proceedings of International Conference on Applied Mathematics and Computational Methods (AMCM 2013), Europment., Venice, 2013, pp.195-200.
Google Scholar
[16]
J. Piteľ, T. Saloky, Simulation Model of a Hot Water Heater, Acta Metallurgica Slovaca 13/3 (2007) 301-306.
Google Scholar
[17]
H. Charvátová, D. Janáčová, R. Drga, O. Líška, V. Vašek, M. Zálešák, Computer Modeling of Heat Balance in Counterflow Tube Heat Exchanger, Int. Journal of Mechanics 7/1 (2013) 385-392.
Google Scholar
[18]
D. Janáčová, P. Mokrejš, V. Vašek, R. Drga, O. Líška, J. Piteľ, M. Zálešák, Verification of Diffusion Mathematical Model for Long-term Materials Drying, International Journal of Mathematical Models and Methods in Applied Sciences 7/11 (2013).
Google Scholar
[19]
D. Janáčová, H. Charvátová, P. Mokrejš, V. Vašek, O. Líška, J. Piteľ, The Mathematical Modeling of Bound Component Extraction, International Journal of Mathematical Models and Methods in Applied Sciences 9 (2015) 91-98.
Google Scholar
[20]
I. Čorný, M. Fedák, Equation Model of Thermal Comfort Parameters, in: Proceedings of 13th International Scientific Conference: Energy transformations in the industry, TUKE, Košice, 2013, pp.25-27.
Google Scholar
[21]
J. Piteľ, Modeling and Simulation of Electromechanical Systems for Heating Control, Chapter in: Modeling, Simulation and Verification of Selected Mechatronic Systems, Tribun EU, Brno, 2008, pp.113-134.
Google Scholar
[22]
J. Piteľ, J. Boržíková, Model of the Heating Body for Heating Process Control Using, in: Proc. of 20th Int. Sci. Conf. Mathematical Methods in Technics and Technologies, JGTU, Jaroslavl, 2007, pp.78-80.
Google Scholar
[23]
D. Pfanstiel, Einsatz Adaptiverund Fuzzy-basieter Regelungsstrategien in der Heizungstechnik, Automatisierungstechnische Praxis 37/1 (1995) 42-48 (in German).
Google Scholar
[24]
A. Hošovský, K. Židek, C. Oswald, Hybridized GA-Optimization of Neural Dynamic Model for Nonlinear Process, in: Proceedings of 13th International Carpathian Control Conference (ICCC 2012), IEEE, Piscataway, 2012, pp.227-232.
DOI: 10.1109/carpathiancc.2012.6228644
Google Scholar
[25]
M. Balara, Linear Parametric Invariant Servo System, Automatizace 33/11-12 (1990) 312-316.
Google Scholar
[26]
J. Piteľ, J. Mižák, Optimization of Heating Control Based on Outdoor Temperature Control, Principia Cybernetica (2010) 66-70.
Google Scholar
[27]
T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States: Vol. 4, RAM-Verlag, Lüdenscheid, 2011, pp.5-8.
Google Scholar
[28]
J. Mižáková, J. Piteľ, S. Hrehová, Some Simulation Results of Heat Transfer through the Wall Model, Int. Journal of Mathematical Models and Methods in Applied Sciences 8 (2014) 1-8.
Google Scholar