Simulation Model of Cascade Control of the Heating System

Article Preview

Abstract:

The automatic heating control systems seem to be the nonlinear systems with thermal inertias and time delay. The controller is also nonlinear because its information and power signals are limited. Application of methods, which are available for nonlinear systems together with computer simulation and mathematical modeling, create possibility to reach serious information about researched system. The paper contains the heating system model with the cascade control, simulation model of this system and some simulation results created in Matlab/Simulink environment.

You might also be interested in these eBooks

Info:

Pages:

20-27

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Piteľ, Analysis of the Heating System from the Perspective of Control, Acta Mechanica Slovaca 2 (2002) 93-98.

Google Scholar

[2] J. Piteľ, J. Šeminský, Analysis of the Innovation Possibilities of Heat Supply Control Systems Based on Outdoor Temperature Compensation, Transfer inovácií 18 (2010) 38-41.

Google Scholar

[3] Ľ. Straka, I. Čorný, J. Boržíková, Analysis of Heat-Affected Zone Depth of Sample Surface at Electrical Discharge Machining with Brass Wire Electrode, Strojárstvo: Journal for Theory and Application in Mechanical Engineering 51/6 (2009) 633-64.

Google Scholar

[4] J. Mižák, J. Piteľ, The Control Systems of Heat Supply - Trends, Technical Solutions. Vykurovanie 2011, Bratislava: SSTP (2011) 427-431.

Google Scholar

[5] J. Piteľ, Simulation of Automatic Control of Heating, Vykurovanie (2008) 353-356.

Google Scholar

[6] I. Lukáčová, J. Boržíková, Comparison of Advanced Control Methods with Classical PID Control for Using in Heating Process Control Based on Outdoor Temperature Compensation, Journal of Applied Science in the Thermodynamics and Fluid Mechanics 4/2 (2010).

Google Scholar

[7] A. Hošovský, J. Novák-Marcinčin, J. Piteľ, J. Boržíková, K. Židek, Model-Based Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator, International Journal of Advanced Robotic Systems 9/56 (2012) 1-11.

DOI: 10.5772/50347

Google Scholar

[8] I. Lukáčová, J. Šeminský, Comparison of Modern Control Methods with Classical PID Controller for Heating Control, Principia Cybernetica (2010) 49-54.

Google Scholar

[9] R. Kreheľ, Ľ. Straka, T. Krenický, Diagnostics of Production Systems Operation Based on Thermal Processes Evaluation, Applied Mechanics and Materials 308 (2013) 121-126.

DOI: 10.4028/www.scientific.net/amm.308.121

Google Scholar

[10] M. Fedák, P. Semančo, M. Mičko, Statistical Process Control Method Based on Weight Percent of Al-Si Alloy for Melting and Holding Process in Die Casting; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 62 (2012).

DOI: 10.1007/978-3-642-32573-1_30

Google Scholar

[11] M. Balara, J.M. Hopen, The Automatic Thermal Control System with Temperature Derivation Feedback, Manufacturing Engineering 1/1 (2002) 22-25.

Google Scholar

[12] Ch. Ebert, A. Schaub, Entwurf und Vergleich von Fuzzy-Regeln am Beispiel einer Heizungsanlage, Automatisierungstechnik 41/5 (1993) 173-179 (in German).

DOI: 10.1515/auto-1993-0512

Google Scholar

[13] J. Piteľ, The Mathematical Model of Heat Transfer Wall to Simulate the Heating Process Control, Acta Metallurgica Slovaca 13/3 (2007) 296-300.

Google Scholar

[14] J. Boržíková, A. Hošovský, J. Piteľ, Modeling of Heat Transfer Through the Wall for Simulation of Heating Process Control, in: Proc. of 9th Int. Sci. -Tech. Conf., DGTU, Rostov, 2010, pp.298-301.

Google Scholar

[15] J. Boržíková, S. Hrehová, A. Hošovský, Simulation Model of Heat Transfer through the Wall, in: Proceedings of International Conference on Applied Mathematics and Computational Methods (AMCM 2013), Europment., Venice, 2013, pp.195-200.

Google Scholar

[16] J. Piteľ, T. Saloky, Simulation Model of a Hot Water Heater, Acta Metallurgica Slovaca 13/3 (2007) 301-306.

Google Scholar

[17] H. Charvátová, D. Janáčová, R. Drga, O. Líška, V. Vašek, M. Zálešák, Computer Modeling of Heat Balance in Counterflow Tube Heat Exchanger, Int. Journal of Mechanics 7/1 (2013) 385-392.

Google Scholar

[18] D. Janáčová, P. Mokrejš, V. Vašek, R. Drga, O. Líška, J. Piteľ, M. Zálešák, Verification of Diffusion Mathematical Model for Long-term Materials Drying, International Journal of Mathematical Models and Methods in Applied Sciences 7/11 (2013).

Google Scholar

[19] D. Janáčová, H. Charvátová, P. Mokrejš, V. Vašek, O. Líška, J. Piteľ, The Mathematical Modeling of Bound Component Extraction, International Journal of Mathematical Models and Methods in Applied Sciences 9 (2015) 91-98.

Google Scholar

[20] I. Čorný, M. Fedák, Equation Model of Thermal Comfort Parameters, in: Proceedings of 13th International Scientific Conference: Energy transformations in the industry, TUKE, Košice, 2013, pp.25-27.

Google Scholar

[21] J. Piteľ, Modeling and Simulation of Electromechanical Systems for Heating Control, Chapter in: Modeling, Simulation and Verification of Selected Mechatronic Systems, Tribun EU, Brno, 2008, pp.113-134.

Google Scholar

[22] J. Piteľ, J. Boržíková, Model of the Heating Body for Heating Process Control Using, in: Proc. of 20th Int. Sci. Conf. Mathematical Methods in Technics and Technologies, JGTU, Jaroslavl, 2007, pp.78-80.

Google Scholar

[23] D. Pfanstiel, Einsatz Adaptiverund Fuzzy-basieter Regelungsstrategien in der Heizungstechnik, Automatisierungstechnische Praxis 37/1 (1995) 42-48 (in German).

Google Scholar

[24] A. Hošovský, K. Židek, C. Oswald, Hybridized GA-Optimization of Neural Dynamic Model for Nonlinear Process, in: Proceedings of 13th International Carpathian Control Conference (ICCC 2012), IEEE, Piscataway, 2012, pp.227-232.

DOI: 10.1109/carpathiancc.2012.6228644

Google Scholar

[25] M. Balara, Linear Parametric Invariant Servo System, Automatizace 33/11-12 (1990) 312-316.

Google Scholar

[26] J. Piteľ, J. Mižák, Optimization of Heating Control Based on Outdoor Temperature Control, Principia Cybernetica (2010) 66-70.

Google Scholar

[27] T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States: Vol. 4, RAM-Verlag, Lüdenscheid, 2011, pp.5-8.

Google Scholar

[28] J. Mižáková, J. Piteľ, S. Hrehová, Some Simulation Results of Heat Transfer through the Wall Model, Int. Journal of Mathematical Models and Methods in Applied Sciences 8 (2014) 1-8.

Google Scholar