Static Force Model-Based Stiffness Model for Pneumatic Muscle Actuators

Article Preview

Abstract:

Pneumatic muscle actuators (PMAs) differ from general pneumatic systems as they have no inner moved parts and there is no sliding on the surfaces. During action they reach high velocities, while the power/weight and power/volume rations reach high levels. The main drawbacks of PMAs are limited contraction (relative displacement), nonlinear and time variable behaviour, existence of hysteresis and step-jump pressure (to start radial diaphragm deformation) and also antagonistic connection of PMAs to generate two-direction motion. These make PMAs difficult to modelling and control. In this paper a new stiffness model and the variable-stiffness spring-like characteristics are described and tested using two Fluidic Muscles made by Festo Company. The muscles have the same diameter, but different length.

You might also be interested in these eBooks

Info:

Pages:

207-214

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. Hopen, A. Hošovský, The Servo Robustification of the Industrial Robot, in: Annals of DAAAM for 2005, DAAAM International, Vienna, 2005, pp.161-162.

Google Scholar

[2] Hošovský, M. Havran, Dynamic Modeling of One Degree of Freedom Pneumatic Muscle-Based Actuator for Industrial Applications, Tehnički Vjesnik 3/19 (2012) 673-681.

Google Scholar

[3] K. Židek, O. Líška, V. Maxim, Rehabilitation Device Based on Unconventional Actuator, Mechatronics: Recent Technological and Scientific Advances, Springer, Berlin, 2011, pp.697-702.

DOI: 10.1007/978-3-642-23244-2_84

Google Scholar

[4] O. Líška, M. More, D. Janáčová, H. Charvátová, Design of Rehabilitation Robot Based on Pneumatic Artificial Muscles. Mathematical Methods and Optimization Techniques in Engineering, WSEAS Press, 2013, pp.151-154.

Google Scholar

[5] J. Mižáková, J. Piteľ, M. Tóthová, Pneumatic Artificial Muscle as Actuator in Mechatronic System, Applied Mechanics and Materials 460 (2014) 81-90.

DOI: 10.4028/www.scientific.net/amm.460.81

Google Scholar

[6] M. Tóthová, Modeling and Simulation of Dynamics of Nonconventional Pneumatic Actuator of Manipulator; Dissertation, FMT TUKE, Prešov, (2014).

Google Scholar

[7] M. Tóthová, Simulation Model of Pneumatic Actuator Based on Artificial Muscles, in: Proc. of Conference IMAP 2013, TUKE, Prešov, 2013, pp.65-69.

Google Scholar

[8] M. Tóthová, Simulation of Pneumatic Muscle Actuator Dynamics, in: Proceedings of 1st Biannual Comparative European Research Conference (CER 2014), London, 2014, pp.109-112.

Google Scholar

[9] Tondu, P. Lopez, Modeling and Control of Mckibben Artificial Muscle Robot Actuators, IEEE Control Systems Magazine 20/2 (2000) 15-38.

DOI: 10.1109/37.833638

Google Scholar

[10] A. Hošovský, P. Michal, M. Tóthová, O. Biroš, Fuzzy Adaptive Control for Pneumatic Muscle Actuator with Simulated Annealing Tuning, in: Proc. of 12th IEEE Int. Symp. on Applied Machine Intelligence and Informatics (SAMI 2014), IEEE, Budapest, 2014, pp.205-209.

DOI: 10.1109/sami.2014.6822408

Google Scholar

[11] J. Boržíková, M. Balara, Mathematical Model of Contraction Characteristics of the Artificial Muscle, Manufacturing Engineering 6/2 (2007) 26-29.

Google Scholar

[12] M. Balara, M. Tóthová, Static and Dynamic Properties of the Pneumatic Actuator with Artificial Muscles, in: Proc. of IEEE 10th Jubilee Int. Symp. on Intelligent Systems and Informatics (SISY 2012), IEEE, Subotica, 2012, pp.577-581.

DOI: 10.1109/sisy.2012.6339483

Google Scholar

[13] A. Hošovský, K. Židek, Experimental Validation of Nominal Model Characteristics for Pneumatic Muscle Actuator, Applied Mechanics and Materials 460 (2014) 1-12.

DOI: 10.4028/www.scientific.net/amm.460.1

Google Scholar

[14] M. Tóthová, S. Hrehová, Dynamic Characteristics of the Antagonistic Pneumatic Muscle Actuator for Biomechanical Applications, in: Proc. of 2nd Int. Conf. on Sensors and Materials Manufacturing Science (ICSMMS 2015), BOSI EDU, Paris, (2015).

Google Scholar

[15] M. Tóthová, A. Hošovský, Dynamic Simulation Model of Pneumatic Actuator with Artificial Muscle, in: Proc. of 11th IEEE Int. Symp. on Applied Machine Intelligence and Informatics (SAMI 2013), IEEE, Budapest, 2013, pp.47-51.

DOI: 10.1109/sami.2013.6480994

Google Scholar

[16] M. Tóthová, Simulation of the Pneumatic Actuator with Artificial Muscles Using Modified Hill´s Muscle Model, in: Proc. of Automation in Theory and Practice (ARTEP 2013), TUKE, Košice, 2013, 41-1-8.

Google Scholar

[17] M. Tóthová, Simulation of the Pneumatic Actuator Dynamics Using Advanced Geometric Model of Artificial Muscle. Proceedings of Automation in Theory and Practice (ARTEP 2014), TUKE, Košice, 2014, 22-1-8.

Google Scholar

[18] T. Kerscher, J. Albiez, J.M. Zollner, R. Dillmann, Evaluation of the Dynamic Model of Fluidic Muscles using Quick-Release, in: Proceedings of the BioRob 2006, Pisa, 2006, pp.637-642.

DOI: 10.1109/biorob.2006.1639161

Google Scholar

[19] F. Daerden, Conception and Realization of Pleated Pneumatic Artificial Muscles and their Use as Compliant Actuation Elements, Vrije Universiteit, Brussel, (1999).

Google Scholar

[20] J. Sárosi, I. Bíró, J. Németh, L. Cveticanin, Dynamic Modelling of a Pneumatic Muscle Actuator with Two-direction Motion, Mechanism and Machine Theory 85 (2015) 25-34.

DOI: 10.1016/j.mechmachtheory.2014.11.006

Google Scholar

[21] K. Lamár, G.A. Kocsis, Implementation of Speed Measurement for Electrical Drives Equipped with Quadrature Encoder in LabVIEW FPGA, Acta Technica Corviniensis - Bulletin of Engineering 6/4 (2013) 123-126.

Google Scholar

[22] Z. Murčinková, T. Krenický, Implementation of Virtual Instrumentation for Multiparametric Technical System Monitoring, in: Proc. of the SGEM 2013, STEF92 Technology, Sofia, 2013, pp.139-144.

Google Scholar

[23] N.S. Bao, S.L. Fei, X.J. Huang, T.Q. Liu, J. Huang, Labview-Based Automatic Four-Axis Positioning Control Air Temperature and Wind Speed Detection Platform for Drying Oven, Advanced Materials Research 718-720 (2013) 1547-1553.

DOI: 10.4028/www.scientific.net/amr.718-720.1547

Google Scholar