Dual Solutions for Unsteady Heat and Mass Transfer in Bio-Convection Flow towards a Rotating Cone/Plate in a Rotating Fluid

Article Preview

Abstract:

A mathematical model has been proposed for analyzing the momentum, heat and mass transfer in Bio-convection flow towards a rotating cone/plate in a rotating fluid with nonlinear thermal radiation and chemical reaction. In this study we considered gyrotactic microorganism’s contained Williamson fluid. Numerical results are carried out by using Runge-Kutta based shooting technique. The effects of dimensionless governing parameters on the flow, heat and mass transfer are illustrated graphically. It is also computed the friction factors for the tangential and azimuthal directions, local Nusselt and Sherwood numbers along with the local density of the motile organisms. It has been observed a good agreement of the present results with the existed literature. The obtained results indicate that the heat and mass transfer rate is significantly increases for higher values of buoyancy parameter and Biot number. It is also found that the heat and mass transfer performance in Bio-convection flow is significantly high on the flow over a rotating plate while compared with the rotating cone.

You might also be interested in these eBooks

Info:

Pages:

161-176

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. L. Tien, Heat transfer by laminar flow from a rotating cone, ASME J. Heat Transfer, 82 (1960) 252-253.

DOI: 10.1115/1.3679924

Google Scholar

[2] J. P. Hartnett, E. C. Deland, The influence of prandtl number on the heat transfer from rotating non-isothermal disks and cones, ASME J. Heat Transfer, 83 (1961) 95-96.

DOI: 10.1115/1.3680479

Google Scholar

[3] C. A. J. Fletcher, M. Holt, Supersonic viscous flow over cones at large angles of attack, J. Fluid Mech., 74(3) (1976) 561-591.

DOI: 10.1017/s002211207600195x

Google Scholar

[4] A. Lin, S. G. Rubint, Three-dimensional supersonic viscous flow over a cone at Incidence, AIAA J., 20(11) (1982) 1500-1507.

DOI: 10.2514/3.51213

Google Scholar

[5] D. Anilkumar, S. Roy, Unsteady mixed convection flow on a rotating cone in a rotating fluid, Appl. Math. Computation, 155 (2004) 545-561.

DOI: 10.1016/s0096-3003(03)00799-9

Google Scholar

[6] S. Roy, H. S. Takhar, G. Nath, Unsteady MHD flow on a rotating cone in a rotating fluid, Meccanica, 39 (2004) 271-283.

DOI: 10.1023/b:mecc.0000022847.28148.98

Google Scholar

[7] A. J. Chamka, Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects, Numerical Heat Transfer, Part-A: Applications: An Int. J. Comp. Method., 39(5) (2001) 511-530.

DOI: 10.1080/10407780120202

Google Scholar

[8] C. Y. Cheng, Natural convection heat and mass transfer near a wavy cone with constant wall temperature and concentration in a porous media, Mechanics in Research Communications, 25(2) (2000) 613-620.

DOI: 10.1016/s0093-6413(00)00137-3

Google Scholar

[9] S. M. Al-Harbi, Numerical study of natural convection heat transfers with variable viscosity and thermal radiation from a cone and wedge in porous media, Applied Mathematics and Computation 170 (2005) 64-75.

DOI: 10.1016/j.amc.2004.10.093

Google Scholar

[10] S. Nadeem, S. Saleem, Analytical treatment of unsteady mixed convection MHD flow on a rotating cone in a rotating frame, J. Taiwan Insti. Chem. Eng., 44(4) (2013) 596-604.

DOI: 10.1016/j.jtice.2013.01.007

Google Scholar

[11] N. Sandeep, C. Sulochana, C. S. K. Raju, M. Jayachandrababu, V. Sugunamma, Unsteady boundary layer flow of thermophoretic MHD nano fluid past a stretching sheet with space and time dependent internal heat source/sink, Applications & Applied Mathematics, 10(1) (2015).

Google Scholar

[12] N. Sandeep, V. Sugunamma, Effect of inclined magnetic field on unsteady free convective flow of dissipative fluid past a vertical plate, World Applied Sciences J., 22(7) (2013) 975-984.

Google Scholar

[13] A. J. Chamkha, S. Abbasbandy, A. M. Rashad, K. Vajravelu, Radiation effects on mixed convection about a cone embedded in a porous medium filled with a nano fluid, Meccanica, 48 (2013) 275-285.

DOI: 10.1007/s11012-012-9599-1

Google Scholar

[14] A. Noghrehabadi, A. Behseresht, Flow and heat transfer affected by variable properties of nanofluids in natural convection over a vertical cone in porous media, Computers& Fluids, 88 (2013) 313-325.

DOI: 10.1016/j.compfluid.2013.09.019

Google Scholar

[15] A.V. Kuznestsov, Bio-thermal convection induced by two different species of microorganisms, Int. Commun. Heat Mass Transfer, 38 (2011) 548-553.

DOI: 10.1016/j.icheatmasstransfer.2011.02.006

Google Scholar

[16] L. Tham, R. Nazar, I. Pop, Steady mixed convection flow on a horizontal circular cylinder embedded in a porous medium filled by a nano fluid containing gyro tactic micro-organisms, J. Heat Transfer, 135 (2013) 102601-1-102601-8.

DOI: 10.1115/1.4024387

Google Scholar

[17] K. Zaimini, A. Ishak, I. Pop, Stagnation point flow toward a stretching/shrinking sheet in a nano fluid containing both nano particles and gyrotactic microorganisms, J. Heat Transfer, 136 (2014) 041705.

DOI: 10.1115/1.4026011

Google Scholar

[18] A. Raees, H. Xu, S. Liao, Unsteady mixed nano-bio-convection flow in a horizontal channels with is upper plate expanding or contracting, Int. J. Heat and Mass Transfer, 86 (2015) 174-182.

DOI: 10.1016/j.ijheatmasstransfer.2015.03.003

Google Scholar

[19] T. Hayat, Y. Saeed, S. Asad, A. Alsaedi, Soret and Dufour effects in the flow of Williamson fluid over an unsteady stretching surface with thermal radiation.

DOI: 10.1515/zna-2014-0252

Google Scholar

[20] S. Nadeem, S. T. Hussain, Flow and heat transfer analysis of Williamson nano fluid, Appl. NanoSci. 4 (2014) 1005-1012.

DOI: 10.1007/s13204-013-0282-1

Google Scholar

[21] S. Nadeem, S. T. Hussain, Heat transfer analysis of Williamson fluid over exponentially stretching surface, Appl. Math. Mech. –Engl. Ed., 35(4) (2014) 489-502.

DOI: 10.1007/s10483-014-1807-6

Google Scholar

[22] I. Zehra, M. M. Yousaf, S. Nadeem, Numerical solutions of Williamson fluid with pressure dependent viscosity, Results in Physics, 5 (2015) 20-25.

DOI: 10.1016/j.rinp.2014.12.002

Google Scholar

[23] C. S. K. Raju, N. Sandeep, V. Sugunamma, M. Jayachandrababu, J. V. Ramanareddy, Heat and mass transfer in magneto hydrodynamic casson fluid over an exponentially permeable stretching surface, Eng. Sci. Tech., an Int. J. , http: /dx. doi. org/10. 1016/j. jestch. 2015. 05. 010.

DOI: 10.1016/j.jestch.2015.05.010

Google Scholar

[24] N. Sandeep, C. Sulochana, Dual solutions of radiative MHD nanofluid flow over an exponentially stretching sheet with heat generation/absorption, Applied Nanoscience, (2015) 1-9, DOI: 10. 1007/s13204-015-0420-z.

DOI: 10.1007/s13204-015-0420-z

Google Scholar

[25] A. J. Chamkha, A. Al-Mudhaf, Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects, Int. J. Thermal Sciences, 44 (2005) 267-276.

DOI: 10.1016/j.ijthermalsci.2004.06.005

Google Scholar

[26] E. M. Sparrow, R. D. Cess, Magneto hydrodynamic flow and heat transfer about a rotating disk, J. Appl. Mech. 29(1) (1962) 181-187.

DOI: 10.1115/1.3636454

Google Scholar

[27] A. J. Chamkha, A. M. Rashad, Unsteady heat and mass transfer by MHD mixed convection flow from a rotating vertical cone with chemical reaction and Soret and Dufour effects, Can. J. Chem. Eng. 9999 (2013) 1-10.

DOI: 10.1002/cjce.21894

Google Scholar

[28] N. Sandeep, C. Sulochana, Dual solutions for unsteady mixed flow of MHD micro polar fluid over a stretching/shrinking sheet with non-uniform heat source/sink, Engineering Science and Technology an International. 18 (2015) 738-745.

DOI: 10.1016/j.jestch.2015.05.006

Google Scholar

[29] B. Rushi Kumar, R. Sivaraj, Heat and mass transfer in MHD viscoelastic fluid flow over a vertical cone and flat plate with variable viscosity. Int. J. Heat and Mass transfer 56 (2013) 370–379.

DOI: 10.1016/j.ijheatmasstransfer.2012.09.001

Google Scholar