[1]
Beer, T. 1991b. The interaction of wind and fire. Bound. -Lay. Meteorol. 54: 287-308).
Google Scholar
[2]
Burrows, N.D. 1994. Experimental development of a fire management model for jarrah (Eucalyptus marginata Donn ex Sm. ) forest. PhD. thesis, Australian National University, Canberra.
Google Scholar
[3]
Perry, G.L.W. (1998). Current approaches to modeling the spread of wildland fire: a review. Prog. Phys. Geog. 22(2): 222-245.
Google Scholar
[4]
Dupuy, J.L. (1999).
Google Scholar
[5]
André, J.C., and D.X. VIEGAS. (2001). Modelos de propagação de fogos florestais: estado-da-arte para utilizadores. Parte I: introdução e modelos locais. Silva Lusitana 9(2): 237-265.
Google Scholar
[6]
Weber, R.O. (2001). Wildland fire spread models. Pp. 151-169 In Forest Fires Behaviour and Ecological Effects, E.A. Johnson and K. Miyanishi(Eds. ). Academic Press, San Diego.
DOI: 10.1016/b978-012386660-8/50007-6
Google Scholar
[7]
Pastor, E., L. Zárate, E. Planas, J. Arnaldos. (2003). Mathematical models and calculation systems for the study of wildland fire behaviour. Prog. Energy Comb. Sci. 29: 139-153.
DOI: 10.1016/s0360-1285(03)00017-0
Google Scholar
[8]
Alexander, M.E., B.J. Stocks, B.M. Wotton, and R.A. Lanoville. (1998).
Google Scholar
[9]
Rehm and Baum, The Equations of Motion for Thermally Driven, Buoyant Flows, JURNAL OF RESEARCH of the National Bureau of Standards Volume 83, No. 3, ( May-June 1978).
DOI: 10.6028/jres.083.019
Google Scholar
[10]
Smagonsky, J. (1963), General circulation experiments with the primitive equations. I. The basic experiment, Mon. Weather Rev., 91, 99–164.
DOI: 10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
Google Scholar
[11]
A.M. Grishin, Mathematical Modelling of Forest Fires and New Methods of Fighting Them, in: F. Albini (Ed. ), Tomsk State University, (1996).
Google Scholar
[12]
Mell, W., Maranghides, A., McDermott, R., Manzello, S.L., (2009). Numerical simulation and experiments of burning douglas fir trees. Combust. Flame. 156, 2023–(2041).
DOI: 10.1016/j.combustflame.2009.06.015
Google Scholar
[13]
Mell, W.E., Charney, J.J., Jenkins, M.A., Cheney, P., Gould, J., (2005). Numerical simulations of grassland fire behavior from the LANL-FIRETEC and NISTWFDS models, East FIRE conference, May 11–13, (2005), George Mason University, Fairfax, VA.
DOI: 10.1007/978-3-642-32530-4_15
Google Scholar
[14]
McGrattan KB (Ed. ) (2004).
Google Scholar
[15]
B.F. Magnussen, B.H. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, in: Proc. Combust. Inst., vol. 16, 1976, p.719–729.
DOI: 10.1016/s0082-0784(77)80366-4
Google Scholar
[16]
S.B. Pope, Turbulent Flows, Cambridge University Press. (2000).
Google Scholar
[17]
K.B. McGrattan, S. Hostikka, J. Floyd, H. Baum, Rehm R., W. Mell, R. McDermott. Fire Dynamics Simulator Technical Reference Guide, Mathematical Model, vol. 1, Technical Report NISTIR Special Publication, 1018-5, National Institute of Standards and Technology, Gaithersburg, Maryland, September (2008).
DOI: 10.6028/nist.sp.1018-5
Google Scholar
[18]
K.B. McGrattan, S. Hostikka, J. Floyd, B. Klein, Fire Dynamics Simulator Technical Reference Guide, Validation, vol. 2, Technical Report NISTIR Special Publication, 1018-5, National Institute of Standards and Technology, Gaithersburg, Maryland, September 2008. http: /fire. nist. gov/fds.
DOI: 10.6028/nist.sp.1018-5
Google Scholar
[19]
N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, UK, 2000; T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, second ed., Edwards, (2005).
DOI: 10.1016/j.combustflame.2005.11.002
Google Scholar
[20]
S.J. Ritchie, K.D. Steckler, A. Hamins, T.G. Cleary, J.C. Yang, T. Kashiwagi, The effect of sample size on the heat release rate of charring materials, in: International Association for Fire Safety Science, March 3–7, 1997, p.177–188.
DOI: 10.3801/iafss.fss.5-177
Google Scholar
[21]
V. Babrauskas, The SFPE Handbook of Fire Protection Engineering, fourth ed., National Fire Protection Assoc., Quincy, MA, (2008).
Google Scholar
[22]
R.C. Rothermel, Thermal Uses and Properties of Cabohydrates and Lignins, Chapter Forest Fires and the Chemistry of Forest Fuel, Academic Press, San Francisco, 1976. p.245–259.
DOI: 10.1016/b978-0-12-637750-7.50018-2
Google Scholar
[23]
R.A. Susott, Characterization of the thermal properties of forest fuels by combustible gas analysis, Forest Sci. 2 (1982) 404–420.
Google Scholar
[24]
W.J. Parker, Prediction of the heat release rate of Douglas fir, in: International Association for Fire Safety Science, Hemisphere, Publishing, New York, 1998, p.337–346.
Google Scholar
[25]
André, J. C. S. (1996). A theory on the propagation of surface forest fire fronts. PhD. Thesis (in portuguese). Mechanical Engineering Department, Faculty of Science and Technology, University of Coimbra. 330 pp.
Google Scholar
[26]
Scott, Joe H.; Reinhardt, Elizabeth D. (2001).
Google Scholar
[27]
R.C. Rothermel, A mathematical model for predicting fire spread in wildland fuels, Technical Report (1972).
Google Scholar
[28]
Scott, J.H., Reinhardt, E.D., (2001). Assessing crown fire potential by linking models of surface and crown fire behavior, Res. Pap. RMRS-RP-29, Fort Collins, CO, USDA, Forest Service, Rocky Mountain Research Station, p.59.
DOI: 10.2737/rmrs-rp-29
Google Scholar
[29]
Gimeno, E., Andreu, V., Rubio, J.L., (2000). Changes in organic matter, nitrogen, phosphorus and cations in soil as a result of fire and water erosion in a Mediterranean landscape. European Journal of Soil Science 51, 201–210.
DOI: 10.1046/j.1365-2389.2000.00310.x
Google Scholar
[30]
Lasanta, T., Arnáez, J., Errea, M.P., Ortigosa, L., Ruiz-Flaño, P., (2009). Mountain pastures, environmental degradation, and landscape remediation: the example of a Mediterranean policy initiative. Applied Geography 29, 308–319.
DOI: 10.1016/j.apgeog.2008.09.006
Google Scholar
[31]
Byram GM. Combustion of forest fuels. In: Davis KP, editor. Forest fire: control and use. New York: Mc Graw-Hill; (1959). p.61–89.
Google Scholar
[32]
Fites JA, Henson C. Real-time evaluation of effects of fuel treatments and other previous land management activities on fire behavior during wildfires. Report of the Joint fires science rapid response project. US Forest Service; (2004). p.1–13.
Google Scholar
[33]
McAthur AG. Control burning in eucalypt forests. Comm. Aust. For. Timb. Bur. Leafl. No. 80; (1962).
Google Scholar
[34]
Hammil KA, Bradstock RA. Remote sensing of fire severity in Blue Mountains: influence of vegetation type and inferring fire intensity. Int J Wildland Fire. (2006); 15: 213–26.
DOI: 10.1071/wf05051
Google Scholar
[35]
De Luis M, Baeza MJ, Raventos J, Gonzales-Hidalgo JC. Fuel characteristics and fire behaviour in mature Mediterranean gorse shrubland. Int J Wildland Fire. ( 2004); 13: 79–87.
DOI: 10.1071/wf03005
Google Scholar
[36]
Alexander ME, De Groot WJ. Fire behavior in jack pine stands as related to the Canadian Forest Fire Weather Index System. Edmonton: Can. For. Serv., North. For. Cent.; (1988).
Google Scholar
[37]
Palheiro PM, Fernandes P, Cruz MG. A fire behaviour-based fire danger classification for maritime pine stands: comparison of two approaches. In: Viegas DX, editor. Proc. V Int. Conf. on Forest Fire Research; (2006). CD-ROM.
DOI: 10.1016/j.foreco.2006.08.075
Google Scholar
[38]
P.A. Santoni, A. Simeoni, J.L. Rossi, F. Bosseur, F. Morandini, X. Silvani, J.H. Balbi, D. Cancellieri, L. Rossi, Instrumentation of wildland fire: Characterisation of a fire spreading through a Mediterranean shrub, Fire Safety Journal 41 (3) (2006).
DOI: 10.1016/j.firesaf.2005.11.010
Google Scholar
[39]
Agueda A, Liodakis S, Pastor E, Planas E. Characterization of the thermal degradation and heat of combustion of Pinus halepensis needles treated with ammonium-polyphosphate-based retardants. J Therm Anal Calorim. (2009); 98: 235–43.
DOI: 10.1007/s10973-009-0134-0
Google Scholar
[40]
J.M. Canfield et al. A numerical investigation of the interplay between fire line length geometry, and rate of spread. Agricultural and Forest Meteorology 189–190 (2014) 48–59.
DOI: 10.1016/j.agrformet.2014.01.007
Google Scholar
[41]
J.S. Pyne, P.L. Andrews & R.D. Laven. Intro. to Wildland Fire, Wiley, N. Y(1986) p.50.
Google Scholar
[42]
K. Raj, A review of the criteria for people exposure to radiant heat flux from fires, Journal of Hazardous Materials 159 (2008) 61–71.
DOI: 10.1016/j.jhazmat.2007.09.120
Google Scholar
[43]
A. Agueda, E. Pastor,Y. Perez, E. Planas, Experimental study of the emissivity of flames resulting from the combustion of forest fuels, International Journal of Thermal Sciences49 (2010)543–554.
DOI: 10.1016/j.ijthermalsci.2009.09.006
Google Scholar
[44]
A.L. Sullivan, P.F. Ellis, I.K. Knight, A review of radiant heat flux models used in bushfire applications, International Journal of Wildland Fire 12 (2003) 101–110.
DOI: 10.1071/wf02052
Google Scholar
[45]
J.L. Rossi et al. An analytical model based on radiative heating for the determination of safety distances for wild land fires /Fire Safety Journal 46(2011)520–527 526.
DOI: 10.1016/j.firesaf.2011.07.007
Google Scholar